307 research outputs found

    Flora robotica -- An Architectural System Combining Living Natural Plants and Distributed Robots

    Full text link
    Key to our project flora robotica is the idea of creating a bio-hybrid system of tightly coupled natural plants and distributed robots to grow architectural artifacts and spaces. Our motivation with this ground research project is to lay a principled foundation towards the design and implementation of living architectural systems that provide functionalities beyond those of orthodox building practice, such as self-repair, material accumulation and self-organization. Plants and robots work together to create a living organism that is inhabited by human beings. User-defined design objectives help to steer the directional growth of the plants, but also the system's interactions with its inhabitants determine locations where growth is prohibited or desired (e.g., partitions, windows, occupiable space). We report our plant species selection process and aspects of living architecture. A leitmotif of our project is the rich concept of braiding: braids are produced by robots from continuous material and serve as both scaffolds and initial architectural artifacts before plants take over and grow the desired architecture. We use light and hormones as attraction stimuli and far-red light as repelling stimulus to influence the plants. Applied sensors range from simple proximity sensing to detect the presence of plants to sophisticated sensing technology, such as electrophysiology and measurements of sap flow. We conclude by discussing our anticipated final demonstrator that integrates key features of flora robotica, such as the continuous growth process of architectural artifacts and self-repair of living architecture.Comment: 16 pages, 12 figure

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Discrete Robotic Assemblies

    Get PDF
    The projects featured in this paper aim to demonstrate the potential of Discrete Robotic Assembly in architecture. Although still in its early stages, this research proves that there is an increase in construction efficiency within a discrete design framework. The research shows how a limited set of assembly possibilities eases the automation of the manufacturing process and leads to a reduction of labour, construction time, and cost. This intrinsic link between discrete design methods and automation hints at a potential shift in the construction industry governed by a new paradigm in computational design, where architectural elements are defined from and for automation

    ReciprocalShell: A hybrid timber system for robotically-fabricated lightweight shell structures

    Get PDF
    Reciprocal timber systems have been widely studied, however they have never been directly applied to the segmented timber shell structures as cross bracing of the polygonal topologies. For the first time, this paper presents an innovative hybrid timber system developed for design and construction of the robotically-fabricated lightweight timber shell structures. The paper integrates two configurations of wood beams: polygonal framing and reciprocal bracing. While, the polygonal topology of facets enables a constant distance offset for the thickness of the shell, the reciprocal configuration allows for cross bracing of polygonal frames where diagonals within the polygons cannot directly connect corners due to geometric constraints resulted by the free-form surface structure of shell shapes. Joining the cross-bracing elements in the center of the polygons with a reciprocal node reduces the complexity of the connection system at nodes while demonstrating the high load-bearing capacity of joints to withstand structural loads throughout the structure, compared to connecting 5, 6 or 7 beams in a single point. The article discusses the application and limitations of the timber system while presenting the design-to-assembly process of a case study of the small-scale shell demonstrator with the maximum span of 7.5 meters made of 144 wood elements for each polygonal and reciprocal configurations. The results show that the timber system has a great capacity for the rapid and precise assembly and disassembly of prefabricated timber structures. Generation of similar but different solid elements, allowed for the development of a custom CAD data interface for the automated production of numerous pieces, where simple joint details are applied for both alignment and attachment of beams, reducing the design complexity and facilitate the construction phase. As the result, the fabrication process was completely carried out with only a saw blade in a multi-axis robotic fabrication set up that enables the rapid, precise, and accurate cuts and grooves. Both timber configurations generate a uniform distribution of beam size, meaning that the production process created only a minimal amount of offcuts that allows for the use of simple and cost-efficient, short solid wood pieces

    Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets.

    Get PDF
    The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity makes them ideal candidates for therapeutic and diagnostic applications. However, the poor stability and high production cost of antibodies have prompted exploration of a variety of synthetic materials capable of specific molecular recognition. Unfortunately, it remains a fundamental challenge to create a chemically diverse population of protein-like, folded synthetic nanostructures with defined molecular conformations in water. Here we report the synthesis and screening of combinatorial libraries of sequence-defined peptoid polymers engineered to fold into ordered, supramolecular nanosheets displaying a high spatial density of diverse, conformationally constrained peptoid loops on their surface. These polyvalent, loop-functionalized nanosheets were screened using a homogeneous Förster resonance energy transfer (FRET) assay for binding to a variety of protein targets. Peptoid sequences were identified that bound to the heptameric protein, anthrax protective antigen, with high avidity and selectivity. These nanosheets were shown to be resistant to proteolytic degradation, and the binding was shown to be dependent on the loop display density. This work demonstrates that key aspects of antibody structure and function-the creation of multivalent, combinatorial chemical diversity within a well-defined folded structure-can be realized with completely synthetic materials. This approach enables the rapid discovery of biomimetic affinity reagents that combine the durability of synthetic materials with the specificity of biomolecular materials

    The Evolution of 3D Printing in AEC: From Experimental to Consolidated Techniques

    Get PDF
    The chapter leads the reader through the historical development of additive manufacturing (AM) techniques until the most recent developments. A tentative taxonomy is added to the historical perspective, in order to better understand the main lines of development and the potential cross-fertilization opportunities. Some case studies are analyzed in order to provide a clearer picture of the practical applications of AM in architecture engineering and construction (AEC), with a particular attention to the use of AM for final products rather than just prototypes. Eventually, some thoughts are shared as to the impact of AM on AEC beyond the mere cost-effectiveness and well into the potential change of paradigms in how architecture can be thought of and further developed embracing the new world of opportunities brought by AM

    Design Transactions

    Get PDF
    Design Transactions presents the outcome of new research to emerge from ‘Innochain’, a consortium of six leading European architectural and engineering-focused institutions and their industry partners. The book presents new advances in digital design tooling that challenge established building cultures and systems. It offers new sustainable and materially smart design solutions with a strong focus on changing the way the industry thinks, designs, and builds our physical environment. Divided into sections exploring communication, simulation and materialisation, Design Transactions explores digital and physical prototyping and testing that challenges the traditional linear construction methods of incremental refinement. This novel research investigates ‘the digital chain’ between phases as an opportunity for extended interdisciplinary design collaboration. The highly illustrated book features work from 15 early-stage researchers alongside chapters from world-leading industry collaborators and academics

    Design Transactions: Rethinking Information for a New Material Age

    Get PDF
    Design Transactions presents the outcome of new research to emerge from ‘Innochain’, a consortium of six leading European architectural and engineering-focused institutions and their industry partners. The book presents new advances in digital design tooling that challenge established building cultures and systems. It offers new sustainable and materially smart design solutions with a strong focus on changing the way the industry thinks, designs, and builds our physical environment. Divided into sections exploring communication, simulation and materialisation, Design Transactions explores digital and physical prototyping and testing that challenges the traditional linear construction methods of incremental refinement. This novel research investigates ‘the digital chain’ between phases as an opportunity for extended interdisciplinary design collaboration. The highly illustrated book features work from 15 early-stage researchers alongside chapters from world-leading industry collaborators and academics
    • …
    corecore