3,766 research outputs found

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    New methods for the estimation of Takagi-Sugeno model based extended Kalman filter and its applications to optimal control for nonlinear systems

    Get PDF
    This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use

    Research on intelligent controller design for MIMO spatially -Distributed systems with applications

    Get PDF
    Spatially dynamic distributed systems have been attracting increasing attention from researchers in the field of system modelling and control since their introduction as an alternative to simple systems to meet the ever-greater requirements to make industrial systems more precise and energy-efficient and to overcome process complexities. An approach whereby complex systems with multi-dimensional parameters, inputs or outputs are simply disregarded or simplified with the help of convenient mathematical models is no longer feasible. Therefore, the purpose of the present study is to contribute to the advancement of both theoretical and empirical knowledge in this field through the means of theoretical analysis, application simulations and case studies. From a theoretical perspective, this study focuses primarily on the design methodology of control systems. To this end, the first step is identification of requirements from the applications, followed by the implementation of an original approach underpinned by data prediction for type-2 T-S fuzzy control with the purpose of making the control system design more convenient. With this aim in mind, the study creates an interface/platform to link or anticipate spatially dynamic distributed system output from lumped system data by taking advantage of the threedimensional character of type-2 fuzzy sets. Moreover, on the basis of a decoupled spatially dynamic distributed system, this study applies Mamdani-type and interval type-2 T-S type fuzzy control, and extends a discussion about the results of simulation and analysis. With regard to application examination, the study contributes to primarily with system analysis and modelling. Along with the progress of physical analysis, a MIMO model is customized for the plant by expanding from the lumped physical character to a distributed system. Furthermore, the coupling feature of the object is addressed based on the decoupling approach and the pole placement approach, while the SISO approach is expanded to a universally acknowledged MIMO approach and Matlab is used to produce the simulation results.As a conclusion, in this research, firstly a state space model was established to expand the SISO system into a MIMO system and the interacted inputs and outputs have been decoupled using decoupling method; and then a Mamdani-type fuzzy control was designed for temperature control and an Interval Type-2 fuzzy control was designed for pressure control, using a simple state-space model instead of a fuzzy model, accordance with the practical plant in use, and very satisfied, very robust control performances were obtained

    An Optimized Type-2 Self-Organizing Fuzzy Logic Controller Applied in Anesthesia for Propofol Dosing to Regulate BIS

    Get PDF
    During general anesthesia, anesthesiologists who provide anesthetic dosage traditionally play a fundamental role to regulate Bispectral Index (BIS). However, in this paper, an optimized type-2 Self-Organizing Fuzzy Logic Controller (SOFLC) is designed for Target Controlled Infusion (TCI) pump related to propofol dosing guided by BIS, to realize automatic control of general anesthesia. The type-2 SOFLC combines a type-2 fuzzy logic controller with a self-organizing (SO) mechanism to facilitate online training while able to contend with operational uncertainties. A novel data driven Surrogate Model (SM) and Genetic Programming (GP) based strategy is introduced for optimizing the type-2 SOFLC parameters offline to handle inter-patient variability. A pharmacological model is built for simulation in which different optimization strategies are tested and compared. Simulation results are presented to demonstrate the applicability of our approach and show that the proposed optimization strategy can achieve better control performance in terms of steady state error and robustness

    Modeling and real-time control of urban drainage systems: A review

    Get PDF
    Urban drainage systems (UDS) may be considered large-scale systems given their large number of associated states and decision actions, making challenging their real-time control (RTC) design. Moreover, the complexity of the dynamics of the UDS makes necessary the development of strategies for the control design. This paper reviews and discusses several techniques and strategies commonly used for the control of UDS. Moreover, the models to describe, simulate, and control the transport of wastewater in UDS are also reviewed.This work has been partially supported by Mexichem, Colombia through the project “Drenaje Urbano y Cambio Climático: Hacia los Sistemas de Alcantarillado del Futuro.” Fase II, with reference No. 548-2012, the scholarships of Colciencias No. 567-2012 and 647-2013, and the project ECOCIS (Ref. DPI2013-48243-C2-1-R).Peer Reviewe

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.
    • …
    corecore