2,022 research outputs found

    Using Pilot Systems to Execute Many Task Workloads on Supercomputers

    Full text link
    High performance computing systems have historically been designed to support applications comprised of mostly monolithic, single-job workloads. Pilot systems decouple workload specification, resource selection, and task execution via job placeholders and late-binding. Pilot systems help to satisfy the resource requirements of workloads comprised of multiple tasks. RADICAL-Pilot (RP) is a modular and extensible Python-based pilot system. In this paper we describe RP's design, architecture and implementation, and characterize its performance. RP is capable of spawning more than 100 tasks/second and supports the steady-state execution of up to 16K concurrent tasks. RP can be used stand-alone, as well as integrated with other application-level tools as a runtime system

    Steering in computational science: mesoscale modelling and simulation

    Full text link
    This paper outlines the benefits of computational steering for high performance computing applications. Lattice-Boltzmann mesoscale fluid simulations of binary and ternary amphiphilic fluids in two and three dimensions are used to illustrate the substantial improvements which computational steering offers in terms of resource efficiency and time to discover new physics. We discuss details of our current steering implementations and describe their future outlook with the advent of computational grids.Comment: 40 pages, 11 figures. Accepted for publication in Contemporary Physic

    Performance of a distributed superscalar storage server

    Get PDF
    The RS/6000 performed well in our test environment. The potential exists for the RS/6000 to act as a departmental server for a small number of users, rather than as a high speed archival server. Multiple UniTree Disk Server's utilizing one UniTree Disk Server's utilizing one UniTree Name Server could be developed that would allow for a cost effective archival system. Our performance tests were clearly limited by the network bandwidth. The performance gathered by the LibUnix testing shows that UniTree is capable of exceeding ethernet speeds on an RS/6000 Model 550. The performance of FTP might be significantly faster if asked to perform across a higher bandwidth network. The UniTree Name Server also showed signs of being a potential bottleneck. UniTree sites that would require a high ratio of file creations and deletions to reads and writes would run into this bottleneck. It is possible to improve the UniTree Name Server performance by bypassing the UniTree LibUnix Library altogether and communicating directly with the UniTree Name Server and optimizing creations. Although testing was performed in a less than ideal environment, hopefully the performance statistics stated in this paper will give end-users a realistic idea as to what performance they can expect in this type of setup

    Irregular Coarse-Grain Data Parallelism under LPARX

    Get PDF

    The Astrophysical Multipurpose Software Environment

    Get PDF
    We present the open source Astrophysical Multi-purpose Software Environment (AMUSE, www.amusecode.org), a component library for performing astrophysical simulations involving different physical domains and scales. It couples existing codes within a Python framework based on a communication layer using MPI. The interfaces are standardized for each domain and their implementation based on MPI guarantees that the whole framework is well-suited for distributed computation. It includes facilities for unit handling and data storage. Currently it includes codes for gravitational dynamics, stellar evolution, hydrodynamics and radiative transfer. Within each domain the interfaces to the codes are as similar as possible. We describe the design and implementation of AMUSE, as well as the main components and community codes currently supported and we discuss the code interactions facilitated by the framework. Additionally, we demonstrate how AMUSE can be used to resolve complex astrophysical problems by presenting example applications.Comment: 23 pages, 25 figures, accepted for A&

    EOS Data and Information System (EOSDIS)

    Get PDF
    In the past decade, science and technology have reached levels that permit assessments of global environmental change. Scientific success in understanding global environmental change depends on integration and management of numerous data sources. The Global Change Data and Information System (GCDIS) must provide for the management of data, information dissemination, and technology transfer. The Earth Observing System Data and Information System (EOSDIS) is NASA's portion of this global change information system
    corecore