69 research outputs found

    Design, synthesis and structural characterisation of inhibitors of 1-Deoxy-D-xylulose-5-phosphate Synthase

    Get PDF
    Due to the emergence of pathogenic organisms with resistance to classical antibiotics, the developmemt of new drugs is needed. The enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) is a potential target for such a new antibiotic. DXPS is the first enzyme of the methylerythritol phosphate (MEP) pathway, one of two known pathways for the biosynthesis of essential terpene building-blocks. It is found in many bacteria and plants, whereas most other organisms, especially mammals, use the mevalonate pathway. Inhibition of the MEP pathway is therefore one way to impare the growth and survival of microorganisms. The focus of this thesis is the protein structure of DXPS and the identification and development of DXPS inhibitors. In Chapter 1.2 an overview of the enzyme and the metabolic pathway is given, Chapter 1.3 updates on developments since 2017. Chapter 1.4 introduces our general workflow for protein-templated dynamic combinatorial chemistry (ptDCC). The main part describes in Chapters 2.1 and 2.2 protein crystallographic work to improve the resolution of D. radiodurans DXPS and structural elucidation of DXPS homologous from pathogenic species. In parallel, the hit-identification strategies ligandbased virtual screening (Chapter 2.3) and ptDCC (Chapter 2.4) were applied to find DXPS inhibitors. Finally, Chapter 2.5 describes the development and crystallographic validation of bioisosters for acylhydrazone-based ptDCC hits.Aufgrund der Zunahme von antibiotika-resistenten Pathogenen ist die Entwicklung neuer Antibiotika erforderlich. Das Enzym 1-Desoxy-D-xylulose-5-phosphat-Synthase (DXPS) ist ein potenzielles Ziel für eine solche Neuentwicklung. DXPS ist das erste Enzym des Methylerythritolphosphat (MEP)-Weges, einer von zwei Stoffwechselwegen für die Biosynthese der essentiellen Terpen bausteine. Er kommt in vielen Bakterien und Pflanzen vor, wohingegen die meisten anderen Organismen, insbesondere Säugetiere, den Mevalonatweg nutzen. Die Hemmung des MEP-Weges ist daher eine Möglichkeit, das Wachstum und Überleben von Mikroorganismen gezielt zu beeinträchtigen. Der Schwerpunkt dieser Arbeit liegt auf der Proteinstruktur von DXPS sowie der Identifizierung und Entwicklung von DXPS-Inhibitoren. Zunächst wird ein Überblick über das Enzym, den MEP-Weg und den aktuellen Forschungsstand seit 2017 gegeben (Kapitel 1.2 und 1.3). Das Protokoll unserer Arbeitsgruppe für protein-templierte dynamische kombinatorische Chemie (ptDCC) wird anschließend in Kapitel 1.4 vorgestellt. Der Hauptteil beschriebt in den Kapiteln 2.1 und 2.2 proteinkristallographische Arbeiten zur Verbesserung der Auflösung von D. radiodurans DXPS sowie zur Strukturaufklärung von DXPS-homologen von Pathogenen. Parallel dazu wurden die Hit-identifikations- Strategien ligandenbasiertes virtuelles Screening (Kapitel 2.3) und ptDCC (Kapitel 2.4) angewandt, um DXPS-Inhibitoren zu finden. Abschließend wird in Kapitel 2.5 die Entwicklung und kristallographische Validierung von Bioisosteren für Acylhydrazon-basierte ptDCC-Hits beschrieben.LIFT gran

    Selection of an aptamer against the enzyme 1-deoxy-D-xylulose-5-phosphate reductoisomerase from Plasmodium falciparum.

    Full text link
    The methyl erythritol phosphate (MEP) pathway of isoprenoid biosynthesis is essential for malaria parasites and also for several human pathogenic bacteria, thus representing an interesting target for future antimalarials and antibiotics and for diagnostic strategies. We have developed a DNA aptamer (D10) against Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of this metabolic route. D10 binds in vitro to recombinant DXR from P. falciparum and Escherichia coli, showing at 10 µM a ca. 50% inhibition of the bacterial enzyme. In silico docking analysis indicates that D10 associates with DXR in solvent-exposed regions outside the active center pocket. According to fluorescence confocal microscopy data, this aptamer specifically targets in P. falciparum in vitro cultures the apicoplast organelle where the MEP pathway is localized and is, therefore, a highly specific marker of red blood cells parasitized by Plasmodium vs. naïve erythrocytes. D10 is also selective for the detection of MEP+ bacteria (e.g., E. coli and Pseudomonas aeruginosa) vs. those lacking DXR (e.g., Enterococcus faecalis). Based on these results, we discuss the potential of DNA aptamers in the development of ligands that can outcompete the performance of the well-established antibody technology for future therapeutic and diagnostic approaches

    Lead optimization for new antimalarials and Successful lead identification for metalloproteinases: A Fragment-based approach Using Virtual Screening

    Get PDF
    Lead optimization for new antimalarials and Successful lead identification for metalloproteinases: A Fragment-based approach Using Virtual Screening Computer-aided drug design is an essential part of the modern medicinal chemistry, and has led to the acceleration of many projects. The herein described thesis presents examples for its application in the field of lead optimization and lead identification for three metalloproteins. DOXP-reductoisomerase (DXR) is a key enzyme of the mevalonate independent isoprenoid biosynthesis. Structure-activity relationships for 43 DXR inhibitors are established, derived from protein-based docking, ligand-based 3D QSAR and a combination of both approaches as realized by AFMoC. As part of an effort to optimize the properties of the established inhibitor Fosmidomycin, analogues have been synthesized and tested to gain further insights into the primary determinants of structural affinity. Unfortunately, these structures still leave the active Fosmidomycin conformation and detailed reaction mechanism undetermined. This fact, together with the small inhibitor data set provides a major challenge for presently available docking programs and 3D QSAR tools. Using the recently developed protein tailored scoring protocol AFMoC precise prediction of binding affinities for related ligands as well as the capability to estimate the affinities of structurally distinct inhibitors has been achieved. Farnesyltransferase is a zinc-metallo enzyme that catalyzes the posttranslational modification of numerous proteins involved in intracellular signal transduction. The development of farnesyltransferase inhibitors is directed towards the so-called non-thiol inhibitors because of adverse drug effects connected to free thiols. A first step on the way to non-thiol farnesyltransferase inhibitors was the development of an CAAX-benzophenone peptidomimetic based on a pharmacophore model. On its basis bisubstrate analogues were developed as one class of non-thiol farnesyltransferase inhibitors. In further studies two aryl binding and two distinct specificity sites were postulated. Flexible docking of model compounds was applied to investigate the sub-pockets and design highly active non-thiol farnesyltransferase inhibitor. In addition to affinity, special attention was paid towards in vivo activity and species specificity. The second part of this thesis describes a possible strategy for computer-aided lead discovery. Assembling a complex ligand from simple fragments has recently been introduced as an alternative to traditional HTS. While frequently applied experimentally, only a few examples are known for computational fragment-based approaches. Mostly, computational tools are applied to compile the libraries and to finally assess the assembled ligands. Using the metalloproteinase thermolysin (TLN) as a model target, a computational fragment-based screening protocol has been established. Starting with a data set of commercially available chemical compounds, a fragment library has been compiled considering (1) fragment likeness and (2) similarity to known drugs. The library is screened for target specificity, resulting in 112 fragments to target the zinc binding area and 75 fragments targeting the hydrophobic specificity pocket of the enzyme. After analyzing the performance of multiple docking programs and scoring functions forand the most 14 candidates are selected for further analysis. Soaking experiments were performed for reference fragment to derive a general applicable crystallization protocol for TLN and subsequently for new protein-fragment complex structures. 3-Methylsaspirin could be determined to bind to TLN. Additional studies addressed a retrospective performance analysis of the applied scoring functions and modification on the screening hit. Curios about the differences of aspirin and 3-methylaspirin, 3-chloroaspirin has been synthesized and affinities could be determined to be 2.42 mM; 1.73 mM und 522 μM respectively. The results of the thesis show, that computer aided drug design approaches could successfully support projects in lead optimization and lead identification. fragments in general, the fragments derived from the screening are docke

    Identification of a 1-deoxy-D-xylulose-5-phosphate synthase (DXS) mutant with improved crystallographic properties

    Get PDF
    In this report, we describe a truncated Deinococcus radiodurans 1-deoxy-D-xylulose-5-phosphate synthase (DXS) protein that retains enzymatic activity, while slowing protein degradation and showing improved crystallization properties. With modern drug-design approaches relying heavily on the elucidation of atomic interactions of potential new drugs with their targets, the need for co-crystal structures with the compounds of interest is high. DXS itself is a promising drug target, as it catalyzes the first reaction in the 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway for the biosynthesis of the universal precursors of terpenes, which are essential secondary metabolites. In contrast to many bacteria and pathogens, which employ the MEP pathway, mammals use the distinct mevalonate-pathway for the biosynthesis of these precursors, which makes all enzymes of the MEP-pathway potential new targets for the development of anti-infectives. However, crystallization of DXS has proven to be challenging: while the first X-ray structures from Escherichia coli and D. radiodurans were solved in 2004, since then only two additions have been made in 2019 that were obtained under anoxic conditions. The presented site of truncation can potentially also be transferred to other homologues, opening up the possibility for the determination of crystal structures from pathogenic species, which until now could not be crystallized. This manuscript also provides a further example that truncation of a variable region of a protein can lead to improved structural data

    Exploiting multiple hit-identification strategies to identify novel inhibitors of the anti-infective target DXPS

    Get PDF
    The coronavirus pandemic has raised awareness for infectious diseases, which also put a spotlight on the fight against anti-microbial resistance. A promising new target in this fight is 1-deoxy-D-xylulose-5-phosphate synthase (DXPS). Although it has been known for the past few decades, only a few promising inhibitors have been identified so far. For this thesis, multiple hit-identification strategies were pursued with a special focus on Mycobacterium tuberculosis and Plasmodium falciparum DXPS to find new inhibitors. For this thesis a focused fragment library was screened against DXPS in different biophysical assay, in collaboration with the company Atomwise, a virtual screening was performed and three previously identified hit classes were investigated in phenotypic assays against P. falciparum and synthetically optimized. In summary, this thesis has contributed to the identification of several new binders and inhibitors that have promising properties to continue their optimization into leads for drug development.Die Corona Pandemie hat dafür gesorgt, dass Infektionskrankheiten und damit auch der Kampf gegen antibiotikaresistente Keime ins Bewusstsein der Öffentlichkeit gerückt sind. Ein neues Target in diesem Kampf ist die 1-Deoxy-D-xylulose-5-phosphat Synthase (DXPS). Das Enzym ist bereits seit einigen Jahrzehnten bekannt, aber bisher wurden nur wenige Inhibitoren gefunden. In dieser Arbeit wurden verschiedene Hit-Identifikationsstrategien genutzt, um neue Inhibitoren gegen Mycobacterium tuberculosis und Plasmodium falciparum DXPS zu finden. Dafür wurde eine fokussierte Fragmentbibliothek gegen DXPS in verschiedenen biophysikalischen Assays untersucht, ein HPLC-MS/MS-basierter DXPS Assay wurde etabliert, in Kooperation mit der Firma Atomwise wurde ein virtuelles Screening an DXPS durchgeführt und drei bereits bekannte Hit-Klassen wurden im Rahmen dieser Arbeit in phänotypischen Assays gegen P. falciparum getestet und synthetisch optimiert. Zusammengefasst hat diese Arbeit zur Identifikation mehrerer Binder und Inhibitoren beigetragen, die vielversprechende Eigenschaften aufweisen und weiter zu Lead-Verbindungen optimiert und somit für die Medikamentenentwicklung genutzt werden können

    Synthesis and bioassay of rationally designed DXR inhibitors as potential antimalarial lead compounds

    Get PDF
    Globally, the eradication of malaria has been challenging due to the problem of resistance that past and currently available drugs exhibit. This is exacerbated by the inherent need for anti-malarial drugs to be affordable to the poverty-stricken majority that is primarily affected by this burden. This research has focused on the development of potential inhibitors of 1-deoxy-D- xylulose-5 phosphate reductoisomerase (DXR), an essential enzyme in the mevalonate- independent pathway for the biosynthesis of isoprenoids in Plasmodium falciparum. DXR mediates the isomerisation and reduction of 1-deoxy-D-xylulose-5-phosphate into 2-C- methyl-D-erithrytol 4-phosphate. This enzyme has been determined to be a target for the development of novel antimalarial agents and extensive molecular modelling has been undertaken to develop inhibitors that fit into the DXR active site. The in silico docking data have been used to inform the design and synthesis of various N-benzyl-substituted phosphoramidate ligands that were determined to have potential as novel substrate mimics of fosmidomycin, a known DXR inhibitor. Synthesis of the N-benzyl-substituted phosphoramidate ligands involved a nine-step sequence commencing from diethyl phosphoramidate. In all, some 40 compounds have been prepared, some of them new, and were fully characterized using NMR. Attention has also been given to the mass spectrometric fragmentation patterns exhibited by selected intermediates. Four of the final products were evaluated for in vitro antimalarial activity using a PLDH assay and exhibited IC50 values < 100 µM

    Over-expression, purification and biochemical characterization of DOXP reductoisomerase and the rational design of novel anti-malarial drugs

    Get PDF
    Malaria poses the greatest threat of all parasites to human life. Current vaccines and efficacious drugs are available however their use is limited due to toxicity, emergence of drug resistance, and cost. The discovery of an alternative pathway of isoprenoid biosynthesis, the non-mevalonate pathway, within the malarial parasite has resulted in development of novel anti-malarial drugs. 1-Deoxy-D-xylulose-5-phosphate (DOXP) reductoisomerase, the second enzyme in this pathway, is responsible for the synthesis of 2-C-methyl-D-erythritol 4-phosphate (MEP) in an intramolecular rearrangement step followed by a reduction process involving NADPH as a hydrogen donor and divalent cations as co-factors. Fosmidomycin and FR900098 have been identified as inhibitors of DOXP reductoisomerase. However, they lack clinical efficacy. In this investigation recombinant DOXP reductoisomerase from Escherichia coli (EcDXR) and Plasmodium falciparum (pfDXR) were biochemically characterized as potential targets for inhibition. (His)6-EcDXR was successfully purified using nickel-chelate affinity chromatography with a specific activity of 1.77 μmoles/min/mg and Km value 282 μM. Utilizing multiple sequence alignment, previous structural data predictions and homology modeling approaches, critical active site amino acid residues were identified and their role in the catalytic activity investigated utilizing site-directed mutagenesis techniques. We have shown evidence that suggests that Trp212 and Met214 interact to maintain the active site architecture and hydrophobic interactions necessary for substrate binding, cofactor binding and enzyme activity. Replacement of Trp212 with Tyr, Phe, and Leu reduced specific activity relative to EcDXR. EcDXR(W212F) and EcDXR(W212Y) had an increased Km relative to EcDXR indicative of loss in affinity toward DOXP, whereas EcDXR(W212L) had a lower Km of ~8 μM indicative of increased affinity for DOXP. The W212L substitution possibly removed contacts necessary for full catalytic activity, but could be considered a non-disruptive substitution in that it maintained active site architecture sufficient for DOXP reductoisomerase activity. EcDXR(M214I) had 36-fold reduced enzyme activity relative to EcDXR, while its Km (~8 μM) was found to be lower than that of EcDXR. This suggested that the M214I substitution had maintained (perhaps improved) substrate and active site architecture, but may have perturbed interactions with NADPH. Rational drug design strategies and docking methods have been utilized in the development of furan derivatives as DOXP reductoisomerase inhibitors, and the synthesis of phosphorylated derivatives (5) and (6) has been achieved. Future inhibitor studies using these novel potential DOXP reductoisomerase inhibitors may lead to the development of effective anti-malarial drug candidates

    Optimization of Clustering and Database Screening Procedures for Cavbase and Virtual Screening for Novel Antimalarial and Antibacterial Molecules

    Get PDF
    Im Zyklus der rationellen Arzneimittelentwicklung werden Affinität und Selektivität von potentiellen Wirkstoffen intensiv erforscht. Da diese beiden Eigenschaften keine lineare Abhängigkeit zueinander aufweisen, führt höhere Affinität nicht gezwungenermaßen auch zu einer höheren Selektivität. Computer-basierte Verfahren spielen eine immer größere Rolle für die Analyse und Vorhersage von Selektivitätsprofilen. Da die meisten erfolgreich eingesetzten niedermolekularen Arzneistoffe in Vertiefungen auf Proteinoberflächen binden, spielen physiko-chemische Eigenschaften von Bindetaschen eine zentrale Rolle in der Erkennung und damit auch der Bindung von Liganden. Cavbase ist eine Methode, die es ermöglicht Bindetaschen anhand der physiko-chemischen Eigenschaften dort exponierter Aminosäuren zu beschreiben und unabhängig von ihrer Proteinsequenz und Faltungsgeometrie zu vergleichen. Die Bindetaschen-basierte Klassifizierung von Proteinen ist ein effektiver Ansatz, um relevante Informationen für Selektivitätsanalysen zu extrahieren, die durch Anwendung von Clustermethoden erreicht werden kann. In der vorliegenden Arbeit wurde ein neuartiger Arbeitsablauf zur Untersuchung von wichtigen Parametern einer Clusterung entwickelt. Für einen Datensatz von Proteinen wird eine Ähnlichkeitsmatrix berechnet und anschließend dem entwickelten Arbeitsablauf übergeben. Dieser Ansatz wurde erfolgreich an zwei unterschiedlichen Datensätzen getestet. Die vorhergesagte Anzahl der Cluster, die am besten geeignete Clustermethode und die anschließende Clusterstruktur waren in Übereinstimmung mit den Referenzklassifikation der Proteine. Im Falle der Protease-Proteinfamilie führte die Bindetaschen-basierte Klassifizierung zur einer signifikanten Gruppierung von Proteineinträgen, die unabhängig von Sequenzinformation entstanden. Damit konnte auf struktureller Ebene die Kreuzreaktivität zwischen dem Protein Calpain-1 und Cysteincathepsinen detektiert werden, die bis jetzt nur auf Basis von Liganddaten beschrieben wurde. Im weiteren Verlauf wurden elf unterschiedliche Serinproteasen untersucht, indem die Topologie der Liganden, Bindetaschen- und Sequenzinformationen miteinander verglichen wurden. Die entstandenen Cluster zeigen einen Korrelationstrend zwischen der Ähnlichkeit im Liganden- und Bindetaschenraum. Eine steigende Anzahl von Resistenzen auf derzeitig angewandte antiparasitäre und antibakterielle Arzneistoffe erfordert die Entwicklung neuartiger Antiinfektiva. Für den Parasiten Plasmodium falciparum, den Erreger der Malaria, wurde das Schlüsselenzym der Fettsäuresynthese Typ-2, Enoyl ACP Reduktase (ENR), als potentielle Zielstruktur vorgeschlagen. In einem virtuellen Screening einer virtuellen Datenbank von fragmentartigen Kleinmolekülen konnten acht vielversprechende Strukturen ausfindig gemacht werden. Ein Salicylsäureamidderivat zeigte in einem zellulären Assay inhibitorische Wirkung im erythrozytären Stadium. Diese Verbindung wurde in weiteren Schritten optimiert, in dem Struktur-Aktivitäts-Beziehungen und kombinatorisches Docking für Salicylamide analysiert wurden. Aus dieser Studie konnten zwei potente Verbindungen hervorgehen, die eine niedrige Zytotoxizität aufweisen und in einstellig mikromolarer Konzentration sowohl im erythrozytären als auch im prä-erythrozytären Stadium ihre hemmende Wirkung entfalten. Die Wirkung im prä-erythrozytären Stadium zeigte sich der Wirkung von Primaquin überlegen. Die Biosynthese der Tetrahydrofolsäure ist ein essenzieller Stoffwechselweg für fast alle Organismen. Das Enzym Pyruvoyltetrahydropterin Synthase im Plasmodium falciparum (PfPTPS) übernimmt in diesem Stoffwechselweg die Katalyse einer Reaktion, die gewöhnlich von Dihydroneopterin Aldolase katalysiert wird, das jedoch im Plasmodium Genom fehlt. Die Einbettung des Enzyms PfPTPS in den Folatstoffwechsel qualifiziert es als eine potentielle Zielstruktur zur Entwicklung neuartiger Antifolate. Eine spezielle auf dieses Zielprotein hin aufgearbeitete Bibliothek weist Kleinmoleküle mit zink-bindenden funktionellen Gruppen auf. Die Durchführung eines virtuellen Screenings führte zur Auswahl von neun Molekülen für die Synthese, die anschließend auf ihre biologische Wirkung evaluiert werden sollen. Eine Vielzahl pathogener Mikroorganismen sind auf die Synthese der Isoprenoide aus dem Methylerithritolphosphatweg (MEP-Weg) angewiesen, daher eignet sich die Inhibition dieses Stoffwechselweges als eine sinnvolle Strategie für die Wirkstoffentwicklung. IspD ist eines der Enzyme des MEP-Weges und wurde als Modellprotein zur Untersuchung der bestimmenden Faktoren für eine strukturbasierte Wirkstoffentwickung ausgewählt. Ein Datensatz von leitstrukturartigen Kleinmolekülen aus der ZINC Datenbank wurde für ein virtuelles Screening benutzt, das zur Auswahl von sieben Kandidaten führte. Sechs Verbindungen konnten kommerziell erworben und getestet werden. Für drei Verbindungen konnte eine Proteinbindung gemessen werden
    corecore