23,742 research outputs found

    Counting hypergraph matchings up to uniqueness threshold

    Get PDF
    We study the problem of approximately counting matchings in hypergraphs of bounded maximum degree and maximum size of hyperedges. With an activity parameter λ\lambda, each matching MM is assigned a weight λ∣M∣\lambda^{|M|}. The counting problem is formulated as computing a partition function that gives the sum of the weights of all matchings in a hypergraph. This problem unifies two extensively studied statistical physics models in approximate counting: the hardcore model (graph independent sets) and the monomer-dimer model (graph matchings). For this model, the critical activity λc=ddk(d−1)d+1\lambda_c= \frac{d^d}{k (d-1)^{d+1}} is the threshold for the uniqueness of Gibbs measures on the infinite (d+1)(d+1)-uniform (k+1)(k+1)-regular hypertree. Consider hypergraphs of maximum degree at most k+1k+1 and maximum size of hyperedges at most d+1d+1. We show that when λ<λc\lambda < \lambda_c, there is an FPTAS for computing the partition function; and when λ=λc\lambda = \lambda_c, there is a PTAS for computing the log-partition function. These algorithms are based on the decay of correlation (strong spatial mixing) property of Gibbs distributions. When λ>2λc\lambda > 2\lambda_c, there is no PRAS for the partition function or the log-partition function unless NP==RP. Towards obtaining a sharp transition of computational complexity of approximate counting, we study the local convergence from a sequence of finite hypergraphs to the infinite lattice with specified symmetry. We show a surprising connection between the local convergence and the reversibility of a natural random walk. This leads us to a barrier for the hardness result: The non-uniqueness of infinite Gibbs measure is not realizable by any finite gadgets

    The complexity of approximately counting in 2-spin systems on kk-uniform bounded-degree hypergraphs

    Full text link
    One of the most important recent developments in the complexity of approximate counting is the classification of the complexity of approximating the partition functions of antiferromagnetic 2-spin systems on bounded-degree graphs. This classification is based on a beautiful connection to the so-called uniqueness phase transition from statistical physics on the infinite Δ\Delta-regular tree. Our objective is to study the impact of this classification on unweighted 2-spin models on kk-uniform hypergraphs. As has already been indicated by Yin and Zhao, the connection between the uniqueness phase transition and the complexity of approximate counting breaks down in the hypergraph setting. Nevertheless, we show that for every non-trivial symmetric kk-ary Boolean function ff there exists a degree bound Δ0\Delta_0 so that for all Δ≥Δ0\Delta \geq \Delta_0 the following problem is NP-hard: given a kk-uniform hypergraph with maximum degree at most Δ\Delta, approximate the partition function of the hypergraph 2-spin model associated with ff. It is NP-hard to approximate this partition function even within an exponential factor. By contrast, if ff is a trivial symmetric Boolean function (e.g., any function ff that is excluded from our result), then the partition function of the corresponding hypergraph 2-spin model can be computed exactly in polynomial time

    Correlation Decay up to Uniqueness in Spin Systems

    Full text link
    We give a complete characterization of the two-state anti-ferromagnetic spin systems which are of strong spatial mixing on general graphs. We show that a two-state anti-ferromagnetic spin system is of strong spatial mixing on all graphs of maximum degree at most \Delta if and only if the system has a unique Gibbs measure on infinite regular trees of degree up to \Delta, where \Delta can be either bounded or unbounded. As a consequence, there exists an FPTAS for the partition function of a two-state anti-ferromagnetic spin system on graphs of maximum degree at most \Delta when the uniqueness condition is satisfied on infinite regular trees of degree up to \Delta. In particular, an FPTAS exists for arbitrary graphs if the uniqueness is satisfied on all infinite regular trees. This covers as special cases all previous algorithmic results for two-state anti-ferromagnetic systems on general-structure graphs. Combining with the FPRAS for two-state ferromagnetic spin systems of Jerrum-Sinclair and Goldberg-Jerrum-Paterson, and the very recent hardness results of Sly-Sun and independently of Galanis-Stefankovic-Vigoda, this gives a complete classification, except at the phase transition boundary, of the approximability of all two-state spin systems, on either degree-bounded families of graphs or family of all graphs.Comment: 27 pages, submitted for publicatio

    Inapproximability of the Partition Function for the Antiferromagnetic Ising and Hard-Core Models

    Full text link
    Recent inapproximability results of Sly (2010), together with an approximation algorithm presented by Weitz (2006) establish a beautiful picture for the computational complexity of approximating the partition function of the hard-core model. Let λc(TΔ)\lambda_c(T_\Delta) denote the critical activity for the hard-model on the infinite Δ\Delta-regular tree. Weitz presented an FPTAS for the partition function when λ<λc(TΔ)\lambda<\lambda_c(T_\Delta) for graphs with constant maximum degree Δ\Delta. In contrast, Sly showed that for all Δ≥3\Delta\geq 3, there exists ϵΔ>0\epsilon_\Delta>0 such that (unless RP=NP) there is no FPRAS for approximating the partition function on graphs of maximum degree Δ\Delta for activities λ\lambda satisfying λc(TΔ)<λ<λc(TΔ)+ϵΔ\lambda_c(T_\Delta)<\lambda<\lambda_c(T_\Delta)+\epsilon_\Delta. We prove that a similar phenomenon holds for the antiferromagnetic Ising model. Recent results of Li et al. and Sinclair et al. extend Weitz's approach to any 2-spin model, which includes the antiferromagnetic Ising model, to yield an FPTAS for the partition function for all graphs of constant maximum degree Δ\Delta when the parameters of the model lie in the uniqueness regime of the infinite tree TΔT_\Delta. We prove the complementary result that for the antiferrogmanetic Ising model without external field that, unless RP=NP, for all Δ≥3\Delta\geq 3, there is no FPRAS for approximating the partition function on graphs of maximum degree Δ\Delta when the inverse temperature lies in the non-uniqueness regime of the infinite tree TΔT_\Delta. Our results extend to a region of the parameter space for general 2-spin models. Our proof works by relating certain second moment calculations for random Δ\Delta-regular bipartite graphs to the tree recursions used to establish the critical points on the infinite tree.Comment: Journal version (no changes
    • …
    corecore