9,521 research outputs found

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes

    Get PDF
    I argue that data becomes temporarily interesting by itself to some self-improving, but computationally limited, subjective observer once he learns to predict or compress the data in a better way, thus making it subjectively simpler and more beautiful. Curiosity is the desire to create or discover more non-random, non-arbitrary, regular data that is novel and surprising not in the traditional sense of Boltzmann and Shannon but in the sense that it allows for compression progress because its regularity was not yet known. This drive maximizes interestingness, the first derivative of subjective beauty or compressibility, that is, the steepness of the learning curve. It motivates exploring infants, pure mathematicians, composers, artists, dancers, comedians, yourself, and (since 1990) artificial systems.Comment: 35 pages, 3 figures, based on KES 2008 keynote and ALT 2007 / DS 2007 joint invited lectur

    Humans monitor learning progress in curiosity-driven exploration

    Get PDF
    International audienceCuriosity-driven learning is foundational to human cognition. By enabling humans to autonomously decide when and what to learn, curiosity has been argued to be crucial for self-organizing temporally extended learning curricula. However, the mechanisms driving people to set intrinsic goals, when they are free to explore multiple learning activities, are still poorly understood. Computational theories propose different heuristics, including competence measures (e.g., percent correct) and learning progress, that could be used as intrinsic utility functions to efficiently organize exploration. Such intrinsic utilities constitute computationally cheap but smart heuristics to prevent people from laboring in vain on unlearnable activities, while still motivating them to self-challenge on difficult learnable activities. Here, we provide empirical evidence for these ideas by means of a free-choice experimental paradigm and computational modeling. We show that while humans rely on competence information to avoid easy tasks, models that include a learning-progress component provide the best fit to task selection data. These results bridge the research in artificial and biological curiosity, reveal strategies that are used by humans but have not been considered in computational research, and introduce tools for probing how humans become intrinsically motivated to learn and acquire interests and skills on extended time scales

    POWERPLAY: Training an Increasingly General Problem Solver by Continually Searching for the Simplest Still Unsolvable Problem

    Get PDF
    Most of computer science focuses on automatically solving given computational problems. I focus on automatically inventing or discovering problems in a way inspired by the playful behavior of animals and humans, to train a more and more general problem solver from scratch in an unsupervised fashion. Consider the infinite set of all computable descriptions of tasks with possibly computable solutions. The novel algorithmic framework POWERPLAY (2011) continually searches the space of possible pairs of new tasks and modifications of the current problem solver, until it finds a more powerful problem solver that provably solves all previously learned tasks plus the new one, while the unmodified predecessor does not. Wow-effects are achieved by continually making previously learned skills more efficient such that they require less time and space. New skills may (partially) re-use previously learned skills. POWERPLAY's search orders candidate pairs of tasks and solver modifications by their conditional computational (time & space) complexity, given the stored experience so far. The new task and its corresponding task-solving skill are those first found and validated. The computational costs of validating new tasks need not grow with task repertoire size. POWERPLAY's ongoing search for novelty keeps breaking the generalization abilities of its present solver. This is related to Goedel's sequence of increasingly powerful formal theories based on adding formerly unprovable statements to the axioms without affecting previously provable theorems. The continually increasing repertoire of problem solving procedures can be exploited by a parallel search for solutions to additional externally posed tasks. POWERPLAY may be viewed as a greedy but practical implementation of basic principles of creativity. A first experimental analysis can be found in separate papers [53,54].Comment: 21 pages, additional connections to previous work, references to first experiments with POWERPLA

    Open challenges in understanding development and evolution of speech forms: The roles of embodied self-organization, motivation and active exploration

    Get PDF
    This article discusses open scientific challenges for understanding development and evolution of speech forms, as a commentary to Moulin-Frier et al. (Moulin-Frier et al., 2015). Based on the analysis of mathematical models of the origins of speech forms, with a focus on their assumptions , we study the fundamental question of how speech can be formed out of non--speech, at both developmental and evolutionary scales. In particular, we emphasize the importance of embodied self-organization , as well as the role of mechanisms of motivation and active curiosity-driven exploration in speech formation. Finally , we discuss an evolutionary-developmental perspective of the origins of speech
    • …
    corecore