5,579 research outputs found

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    Bayesian Analysis of ODE's: solver optimal accuracy and Bayes factors

    Full text link
    In most relevant cases in the Bayesian analysis of ODE inverse problems, a numerical solver needs to be used. Therefore, we cannot work with the exact theoretical posterior distribution but only with an approximate posterior deriving from the error in the numerical solver. To compare a numerical and the theoretical posterior distributions we propose to use Bayes Factors (BF), considering both of them as models for the data at hand. We prove that the theoretical vs a numerical posterior BF tends to 1, in the same order (of the step size used) as the numerical forward map solver does. For higher order solvers (eg. Runge-Kutta) the Bayes Factor is already nearly 1 for step sizes that would take far less computational effort. Considerable CPU time may be saved by using coarser solvers that nevertheless produce practically error free posteriors. Two examples are presented where nearly 90% CPU time is saved while all inference results are identical to using a solver with a much finer time step.Comment: 28 pages, 6 figure

    Adaptive Detection of Instabilities: An Experimental Feasibility Study

    Full text link
    We present an example of the practical implementation of a protocol for experimental bifurcation detection based on on-line identification and feedback control ideas. The idea is to couple the experiment with an on-line computer-assisted identification/feedback protocol so that the closed-loop system will converge to the open-loop bifurcation points. We demonstrate the applicability of this instability detection method by real-time, computer-assisted detection of period doubling bifurcations of an electronic circuit; the circuit implements an analog realization of the Roessler system. The method succeeds in locating the bifurcation points even in the presence of modest experimental uncertainties, noise and limited resolution. The results presented here include bifurcation detection experiments that rely on measurements of a single state variable and delay-based phase space reconstruction, as well as an example of tracing entire segments of a codimension-1 bifurcation boundary in two parameter space.Comment: 29 pages, Latex 2.09, 10 figures in encapsulated postscript format (eps), need psfig macro to include them. Submitted to Physica

    COEL: A Web-based Chemistry Simulation Framework

    Get PDF
    The chemical reaction network (CRN) is a widely used formalism to describe macroscopic behavior of chemical systems. Available tools for CRN modelling and simulation require local access, installation, and often involve local file storage, which is susceptible to loss, lacks searchable structure, and does not support concurrency. Furthermore, simulations are often single-threaded, and user interfaces are non-trivial to use. Therefore there are significant hurdles to conducting efficient and collaborative chemical research. In this paper, we introduce a new enterprise chemistry simulation framework, COEL, which addresses these issues. COEL is the first web-based framework of its kind. A visually pleasing and intuitive user interface, simulations that run on a large computational grid, reliable database storage, and transactional services make COEL ideal for collaborative research and education. COEL's most prominent features include ODE-based simulations of chemical reaction networks and multicompartment reaction networks, with rich options for user interactions with those networks. COEL provides DNA-strand displacement transformations and visualization (and is to our knowledge the first CRN framework to do so), GA optimization of rate constants, expression validation, an application-wide plotting engine, and SBML/Octave/Matlab export. We also present an overview of the underlying software and technologies employed and describe the main architectural decisions driving our development. COEL is available at http://coel-sim.org for selected research teams only. We plan to provide a part of COEL's functionality to the general public in the near future.Comment: 23 pages, 12 figures, 1 tabl
    corecore