8,485 research outputs found

    Machine Learning Research Trends in Africa: A 30 Years Overview with Bibliometric Analysis Review

    Full text link
    In this paper, a critical bibliometric analysis study is conducted, coupled with an extensive literature survey on recent developments and associated applications in machine learning research with a perspective on Africa. The presented bibliometric analysis study consists of 2761 machine learning-related documents, of which 98% were articles with at least 482 citations published in 903 journals during the past 30 years. Furthermore, the collated documents were retrieved from the Science Citation Index EXPANDED, comprising research publications from 54 African countries between 1993 and 2021. The bibliometric study shows the visualization of the current landscape and future trends in machine learning research and its application to facilitate future collaborative research and knowledge exchange among authors from different research institutions scattered across the African continent

    Underwater optical wireless communications in turbulent conditions: from simulation to experimentation

    Get PDF
    Underwater optical wireless communication (UOWC) is a technology that aims to apply high speed optical wireless communication (OWC) techniques to the underwater channel. UOWC has the potential to provide high speed links over relatively short distances as part of a hybrid underwater network, along with radio frequency (RF) and underwater acoustic communications (UAC) technologies. However, there are some difficulties involved in developing a reliable UOWC link, namely, the complexity of the channel. The main focus throughout this thesis is to develop a greater understanding of the effects of the UOWC channel, especially underwater turbulence. This understanding is developed from basic theory through to simulation and experimental studies in order to gain a holistic understanding of turbulence in the UOWC channel. This thesis first presents a method of modelling optical underwater turbulence through simulation that allows it to be examined in conjunction with absorption and scattering. In a stationary channel, this turbulence induced scattering is shown to cause and increase both spatial and temporal spreading at the receiver plane. It is also demonstrated using the technique presented that the relative impact of turbulence on a received signal is lower in a highly scattering channel, showing an in-built resilience of these channels. Received intensity distributions are presented confirming that fluctuations in received power from this method follow the commonly used Log-Normal fading model. The impact of turbulence - as measured using this new modelling framework - on link performance, in terms of maximum achievable data rate and bit error rate is equally investigated. Following that, experimental studies comparing both the relative impact of turbulence induced scattering on coherent and non-coherent light propagating through water and the relative impact of turbulence in different water conditions are presented. It is shown that the scintillation index increases with increasing temperature inhomogeneity in the underwater channel. These results indicate that a light beam from a non-coherent source has a greater resilience to temperature inhomogeneity induced turbulence effect in an underwater channel. These results will help researchers in simulating realistic channel conditions when modelling a light emitting diode (LED) based intensity modulation with direct detection (IM/DD) UOWC link. Finally, a comparison of different modulation schemes in still and turbulent water conditions is presented. Using an underwater channel emulator, it is shown that pulse position modulation (PPM) and subcarrier intensity modulation (SIM) have an inherent resilience to turbulence induced fading with SIM achieving higher data rates under all conditions. The signal processing technique termed pair-wise coding (PWC) is applied to SIM in underwater optical wireless communications for the first time. The performance of PWC is compared with the, state-of-the-art, bit and power loading optimisation algorithm. Using PWC, a maximum data rate of 5.2 Gbps is achieved in still water conditions

    Cost-effective non-destructive testing of biomedical components fabricated using additive manufacturing

    Get PDF
    Biocompatible titanium-alloys can be used to fabricate patient-specific medical components using additive manufacturing (AM). These novel components have the potential to improve clinical outcomes in various medical scenarios. However, AM introduces stability and repeatability concerns, which are potential roadblocks for its widespread use in the medical sector. Micro-CT imaging for non-destructive testing (NDT) is an effective solution for post-manufacturing quality control of these components. Unfortunately, current micro-CT NDT scanners require expensive infrastructure and hardware, which translates into prohibitively expensive routine NDT. Furthermore, the limited dynamic-range of these scanners can cause severe image artifacts that may compromise the diagnostic value of the non-destructive test. Finally, the cone-beam geometry of these scanners makes them susceptible to the adverse effects of scattered radiation, which is another source of artifacts in micro-CT imaging. In this work, we describe the design, fabrication, and implementation of a dedicated, cost-effective micro-CT scanner for NDT of AM-fabricated biomedical components. Our scanner reduces the limitations of costly image-based NDT by optimizing the scanner\u27s geometry and the image acquisition hardware (i.e., X-ray source and detector). Additionally, we describe two novel techniques to reduce image artifacts caused by photon-starvation and scatter radiation in cone-beam micro-CT imaging. Our cost-effective scanner was designed to match the image requirements of medium-size titanium-alloy medical components. We optimized the image acquisition hardware by using an 80 kVp low-cost portable X-ray unit and developing a low-cost lens-coupled X-ray detector. Image artifacts caused by photon-starvation were reduced by implementing dual-exposure high-dynamic-range radiography. For scatter mitigation, we describe the design, manufacturing, and testing of a large-area, highly-focused, two-dimensional, anti-scatter grid. Our results demonstrate that cost-effective NDT using low-cost equipment is feasible for medium-sized, titanium-alloy, AM-fabricated medical components. Our proposed high-dynamic-range strategy improved by 37% the penetration capabilities of an 80 kVp micro-CT imaging system for a total x-ray path length of 19.8 mm. Finally, our novel anti-scatter grid provided a 65% improvement in CT number accuracy and a 48% improvement in low-contrast visualization. Our proposed cost-effective scanner and artifact reduction strategies have the potential to improve patient care by accelerating the widespread use of patient-specific, bio-compatible, AM-manufactured, medical components

    Radionuclide and heavy metal sorption on to functionalised magnetic nanoparticles for environmental remediation

    Get PDF
    The presence of radionuclides and heavy metal ions in aqueous waste streams from industrial processes, especially in the nuclear waste industry, are a major concern. Many other processes are inherent producers of hazardous aqueous waste streams that require treatment for further disposal. These wastes quite often contain many contaminants, from harmful to very toxic. Contact with the environment, through groundwater or rivers, with such contaminants needs to be avoided. The ability to selectively sequester and remove contaminants from aqueous wastes with high loading capacities is of paramount importance to achieve full removal of the contaminants produced in many industries. The recent development of phosphate functionalised superparamagnetic magnetite ((PO)x-Fe3O4) nanoparticles have been shown to have ultra-high loading capacities and a high degree of selectivity towards uranium (U(VI)). The ability to manipulate these NPs with an external magnetic field gives these nanomaterials an advantage over many other conventional technologies in the field. These low-cost, non-toxic, and easily prepared magnetic NPs are highly biocompatible and have already been widely applied in the biotechnology and biomedical industries. The addition of specific functionalities allows for the fine tuning of the selectivity towards certain elements, therefore allowing full control over the selective removal of a wide range of contaminants. This study addresses the optimisation of the NPs manufacturing process that allows for the use of these NPs in a wider range of environments. Many of these waste streams are extreme environments, where they can be highly acidic or highly basic conditions. Therefore the feasibility of coating the Fe3O4 with silica (SiO2) was addressed, to provide an acid resistant layer and substrate for further functionalisation. Both the silica coating, and the applied surface functionality, were found to be stable against dissolution or chemical changes under acidic conditions from pH 1-4. Once acid resistance was established, the ability to extract a wide range of contaminant ions was also investigated. Sorption experiments with a wide range of contaminant ions were conducted to determine the selectivity and loading capacities of both (PO)x-Fe3O4 and (PO)x-SiO2@Fe3O4 NPs, at acidic (pH 3), neutral (pH 7), and basic (pH 11) conditions. Providing a basis for the manufacture of a state-of-the-art, novel extraction tool for both heavy metals and radionuclides. Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy - Energy Dispersive X-Ray (STEM-EDX) were used to achieve full characterisation of the NP complexes and supernatants to determine the successful extraction and presence of the contaminant metal ions used in this study. Determining the uptake kinetics, loading capacities for Cs(I), K(I), Na(I), Ca(II), Cd(II), Co(II), Cu(II), Mg(II), Mn(II), Mo(II), Ni(II), Pb(II), Sr(II), Al(III), Ce(III), Cr(III), Eu(III), Fe(III) and La(III) on to (PO)x-Fe3O4 and (PO)x-SiO2@Fe3O4 NPs. Implications of the use of these NPs in the extraction of radionuclides and heavy metals have been discussed in each case along with the potential for developing a broad-spectrum adsorbent. In conclusion, this PhD has shown the potential of these novel as-synthesised phosphate functionalised NP complexes to be utilised for heavy metal and radionuclide extraction, of a range of contaminants, from aqueous solutions, in acidic, neutral, and basic conditions. The production of these cost-effective and selective nanomaterials which exhibit rapid kinetics has the potential to be an important asset to the water treatment industry. Overall, these NP-complexes have been effective in fully removing a wide range of heavy metal contaminants and, therefore, have shown great promise to become a broad-spectrum adsorbent tool, which ultimately will aid in the clean-up of many new and legacy waste environments.Open Acces

    Development of a light-sheet fluorescence microscope employing an ALPAO deformable mirror to achieve video-rate remote refocusing and volumetric imaging.

    Get PDF
    There are numerous situations in microscopy where it is desirable to remotely refocus a microscope employing a high numerical aperture (NA) objective lens. This thesis describes the characterisation, development and implementation of an Alpao membrane deformable mirror-based system to achieve this goal for a light-sheet fluorescence microscope (LSFM). The Alpao deformable mirror (DM) DM97-15 used is this work has 97 actuators and was sufficiently fast to perform refocus sweeps at 25 Hz and faster. However, a known issue with using Alpao deformable mirrors in open-loop mode is that they exhibit viscoelastic creep and temperature- dependent variations in the mirror response. The effect of visco-elastic creep was reduced by ensuring that the mirror profile was on average constant on timescales shorter than the characteristic time of the visco-elastic creep. The thermal effect was managed by ensuring that the electrical power delivered to the actuators was constant prior to optimisation and use. This was achieved by ensuring that the frequency and amplitude of oscillation of the mirror was constant prior to optimisation, so that it reached a thermal steady state, was approximately constant during optimisation and constant during use. The image-based optimisation procedure employed used an estimate of the Strehl ratio of the optical system calculated from an image of an array of 1 μm diameter holes. The optimisation procedure included optimising the amount of high-NA defocus and the Zernike modes from Noll indices 4 to 24. The system was tested at 26.3 refocus sweeps per second over a refocus range of -50 to 50 μm with a 40x/0.85 air objective and a 40x/0.80 water immersion objective. The air objective enabled a mean Strehl metric of more than 0.6 over a lateral field of view of 200x200 microns and for a refocus range of 45 microns. The water objective achieved a mean Strehl metric of more than 0.6 over a lateral field of view of 200x200 microns over a larger refocus range of 77 microns. The DM-based refocusing system was then incorporated into a LSFM setup. The spatial resolution of the system was characterised using fluorescent beads imaged volumetrically at 26.3 volumes per second. The performance of the system was also demonstrated for imaging fluorescence pollen grain samples.Open Acces

    The role of language and sensorimotor information in memory for concepts

    Get PDF
    The linguistic-simulation approach to conceptual representations has been investigated for some time, but the role of language and sensorimotor information in memory for objects and words, both short- and long-term, has not been examined in detail. In the present thesis, I look at the interplay of sensorimotor and linguistic information in conceptual knowledge and examine which aspects of concepts are represented in memory tasks. I also aim to establish the role of consciously accessing conceptual information in word recognition and memory. The thesis includes three self-contained papers which show that the conceptual system relies on linguistic or sensorimotor information according to task demands. In the paper in Chapter 4, I examined the linguistic bootstrapping hypothesis, which postulates that linguistic labels can serve as placeholders for complex sensorimotor representations. I tested the capacity of working memory for object concepts using an articulatory suppression task to block access to language. I found that working memory capacity for contextually related object concepts when relying on sensorimotor information is higher than the traditionally reported capacity of 3-4 for simple shapes or colours. Additionally, when linguistic labels are available to deputise for complex sensorimotor information, the capacity further increases by up to two object concepts. In Chapters 5 and 6, I examined the content of conceptual information stored in long-term memory, and the role of sensorimotor simulation and consciously available information in word recognition and word memory. The studies revealed that consciously generated imagery is not reliably measured, and moreover, it does not contribute to word recognition in a consistent manner. Some of the effects of imageability found in the literature can be explained or subsumed by sensorimotor information, which is not fully available through conscious awareness. However, conscious imagery may be a useful strategy to support word memory when trying to explicitly remember words. The thesis demonstrates that both linguistic labels and sensorimotor information contribute to memory for concepts. The way a concept is represented in different tasks varies depending on task demands. Linguistic information is used to circumvent resource capacity limits, while sensorimotor information guides behaviour by providing more detailed information about the meaning of concepts, and our previous experience with them

    CIMED - I Congreso Internacional de Museos y Estrategias Digitales

    Full text link
    El I Congreso Internacional de Museos y Estrategias Digitales nace de la necesidad imperiosa de diseñar e integrar nuevas estrategias de comunicación entre nuestros museos e instituciones culturales, así como entre éstas y los públicos, en una emergencia que se ha agudizado tras la crisis generada por la COVID-19. El objetivo es que el congreso sirva de referencia y guía a todos aquellos profesionales del sector que asistan a su celebración o que accedan posteriormente a toda la documentación relativa al evento, que estará accesible a través de las Actas del congreso, publicadas en abierto e indexadas, y en formato video, con el resumen de algunas de las ponenciasMartí Testón, A. (2022). CIMED - I Congreso Internacional de Museos y Estrategias Digitales. Editorial Universitat Politècnica de València. https://doi.org/10.4995/CIMED21.2021.14065EDITORIA

    Electronic Imaging & the Visual Arts. EVA 2019 Florence

    Get PDF
    The Publication is following the yearly Editions of EVA FLORENCE. The State of Art is presented regarding the Application of Technologies (in particular of digital type) to Cultural Heritage. The more recent results of the Researches in the considered Area are presented. Information Technologies of interest for Culture Heritage are presented: multimedia systems, data-bases, data protection, access to digital content, Virtual Galleries. Particular reference is reserved to digital images (Electronic Imaging & the Visual Arts), regarding Cultural Institutions (Museums, Libraries, Palace - Monuments, Archaeological Sites). The International Conference includes the following Sessions: Strategic Issues; New Science and Culture Developments & Applications; New Technical Developments & Applications; Cultural Activities – Real and Virtual Galleries and Related Initiatives, Access to the Culture Information. One Workshop regards Innovation and Enterprise. The more recent results of the Researches at national and international level are reported in the Area of Technologies and Culture Heritage, also with experimental demonstrations of developed Activities
    corecore