28 research outputs found

    ICCSA 2022

    Get PDF
    Producción CientíficaThe process of economic, social, and cultural development leads to relevant changes in urban areas. Urban transformations usually generate a series of public and private real estate compounds which constitute real obstacles to urban walkability. The growing attention towards the sustainable development goals established on a global scale introduced new contents in urban redevelopment policies, aimed at favoring higher levels of accessibility in the consolidated fabric, particularly that of the pedestrian type. In addition, the recent pandemic has recently reassessed the role of pedestrian mobility as a primary way of moving instead of using other means of transport. As a result, urban walkability has moved at the core of the sustainable city paradigm. More precisely, issues related to accessibility and walkability should be considered when addressing the obstacle generated by those sites that can be properly defined ‘urban enclaves’, especially when abandoned or under redevelopment. These conditions may encourage the gradual reopening of these areas for citizens. Within this framework, the Sustainable Urban Mobility Plan (SUMP) can represent a strategic tool for identifying the critical aspects to face for the creation of a new network of pedestrian routes aimed at improving urban walkability. The objective of this study is to define a set of principles and criteria, both tangible and intangible, for calculating the proximity index (PI). The PI may consequently drive urban regeneration projects also through the design of new paths for crossing the enclaves to improve urban permeability and, therefore, the level of walkabilitySardinia Foundation (CUP F74I19001040007

    A Three-Level Hierarchical Encoder Using Shape Independent Transform

    Get PDF
    In this paper a scheme for utilizing shape independent basis functions for a hierarchical multiresolution image compression is shown. First, an image is segmented and its segments\' boundaries are polygon approximated, thus achieving an image mask. Second, this image mask and the image are used as an input of a three-level hierarchical encoder. The hierarchical encoder subsamples the image and the image mask and encodes them shape independently; it produces an output bit stream on a respective level that is also used on lower level(s) for further coding. On the base level a triangulation of the image mask is performed for superior performance. Another compression mode is, hence, introduced for the shape independent transform coding

    Using Space Syntax For Estimation Of Potential Disaster Indirect Economic Losses

    Get PDF
    The study of applicable network measures shows that Normalised Angular Choice can be used as criteria for selecting alternatives for minimizing indirect costs caused by road network damages. At the same time, this methodology cannot be used for monetizing indirect costs or identifying losses in different economic sectors. The study approach does not contradict the main theoretical approaches and it gives new opportunities for research on disasters recovery

    Legacy code support for production grids

    Get PDF
    In order to improve reliability and to deal with the high complexity of existing middleware solutions, today's production Grid systems restrict the services to be deployed on their resources. On the other hand end-users require a wide range of value added services to fully utilize these resources. This paper describes a solution how legacy code support is offered as third party service for production Grids. The introduced solution, based on the Grid Execution Management for Legacy Code Architecture (GEMLCA), do not require the deployment of additional applications on the Grid resources, or any extra effort from Grid system administrators. The implemented solution was successfully connected to and demonstrated on the UK National Grid Service. © 2005 IEEE

    An improved Ant Colony System for the Sequential Ordering Problem

    Full text link
    It is not rare that the performance of one metaheuristic algorithm can be improved by incorporating ideas taken from another. In this article we present how Simulated Annealing (SA) can be used to improve the efficiency of the Ant Colony System (ACS) and Enhanced ACS when solving the Sequential Ordering Problem (SOP). Moreover, we show how the very same ideas can be applied to improve the convergence of a dedicated local search, i.e. the SOP-3-exchange algorithm. A statistical analysis of the proposed algorithms both in terms of finding suitable parameter values and the quality of the generated solutions is presented based on a series of computational experiments conducted on SOP instances from the well-known TSPLIB and SOPLIB2006 repositories. The proposed ACS-SA and EACS-SA algorithms often generate solutions of better quality than the ACS and EACS, respectively. Moreover, the EACS-SA algorithm combined with the proposed SOP-3-exchange-SA local search was able to find 10 new best solutions for the SOP instances from the SOPLIB2006 repository, thus improving the state-of-the-art results as known from the literature. Overall, the best known or improved solutions were found in 41 out of 48 cases.Comment: 30 pages, 8 tables, 11 figure

    Designing visual analytics methods for massive collections of movement data

    Get PDF
    Exploration and analysis of large data sets cannot be carried out using purely visual means but require the involvement of database technologies, computerized data processing, and computational analysis methods. An appropriate combination of these technologies and methods with visualization may facilitate synergetic work of computer and human whereby the unique capabilities of each “partner” can be utilized. We suggest a systematic approach to defining what methods and techniques, and what ways of linking them, can appropriately support such a work. The main idea is that software tools prepare and visualize the data so that the human analyst can detect various types of patterns by looking at the visual displays. To facilitate the detection of patterns, we must understand what types of patterns may exist in the data (or, more exactly, in the underlying phenomenon). This study focuses on data describing movements of multiple discrete entities that change their positions in space while preserving their integrity and identity. We define the possible types of patterns in such movement data on the basis of an abstract model of the data as a mathematical function that maps entities and times onto spatial positions. Then, we look for data transformations, computations, and visualization techniques that can facilitate the detection of these types of patterns and are suitable for very large data sets – possibly too large for a computer's memory. Under such constraints, visualization is applied to data that have previously been aggregated and generalized by means of database operations and/or computational techniques
    corecore