33,107 research outputs found

    Integrating Emerging Areas of Nursing Science into PhD Programs

    Get PDF
    The Council for the Advancement of Nursing Science aims to “facilitate and recognize life-long nursing science career development” as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2010 American Association of Colleges of Nursing Position Statement “The Research-Focused Doctoral Program in Nursing: Pathways to Excellence,” Idea Festival Advisory Committee members focused on emerging areas of science and technology that impact the ability of research-focused doctoral programs to prepare graduates for competitive and sustained programs of nursing research using scientific advances in emerging areas of science and technology. The purpose of this article is to describe the educational and scientific contexts for the Idea Festival, which will serve as the foundation for recommendations for incorporating emerging areas of science and technology into research-focused doctoral programs in nursing

    Educating Future Nursing Scientists: Recommendations for Integrating Omics Content in PhD Programs

    Get PDF
    Preparing the next generation of nursing scientists to conduct high-impact, competitive, sustainable, innovative, and interdisciplinary programs of research requires that the curricula for PhD programs keep pace with emerging areas of knowledge and health care/biomedical science. A field of inquiry that holds great potential to influence our understanding of the underlying biology and mechanisms of health and disease is omics. For the purpose of this article, omics refers to genomics, transcriptomics, proteomics, epigenomics, exposomics, microbiomics, and metabolomics. Traditionally, most PhD programs in schools of nursing do not incorporate this content into their core curricula. As part of the Council for the Advancement of Nursing Science\u27s Idea Festival for Nursing Science Education, a work group charged with addressing omics preparation for the next generation of nursing scientists was convened. The purpose of this article is to describe key findings and recommendations from the work group that unanimously and enthusiastically support the incorporation of omics content into the curricula of PhD programs in nursing. The work group also calls to action faculty in schools of nursing to develop strategies to enable students needing immersion in omics science and methods to execute their research goals

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Emerging Areas of Science: Recommendations for Nursing Science Education from the Council for the Advancement of Nursing Science Idea Festival

    Get PDF
    The Council for the Advancement of Nursing Science aims to “facilitate and recognize life-long nursing science career development” as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee (IFAC) to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2005 National Research Council report Advancing The Nation\u27s Health Needs and the 2010 American Association of Colleges of Nursing Position Statement on the Research-Focused Doctorate Pathways to Excellence, the IFAC specifically addressed the capacity of PhD programs to prepare nursing scientists to conduct cutting-edge research in the following key emerging and priority areas of health sciences research: omics and the microbiome; health behavior, behavior change, and biobehavioral science; patient-reported outcomes; big data, e-science, and informatics; quantitative sciences; translation science; and health economics. The purpose of this article is to (a) describe IFAC activities, (b) summarize 2014 discussions hosted as part of the Idea Festival, and (c) present IFAC recommendations for incorporating these emerging areas of science and technology into research-focused doctoral programs committed to preparing graduates for lifelong, competitive careers in nursing science. The recommendations address clearer articulation of program focus areas; inclusion of foundational knowledge in emerging areas of science in core courses on nursing science and research methods; faculty composition; prerequisite student knowledge and skills; and in-depth, interdisciplinary training in supporting area of science content and methods

    Connecting Levels of Analysis in Educational Neuroscience: A Review of Multi-level Structure of Educational Neuroscience with Concrete Examples

    Get PDF
    In its origins educational neuroscience has started as an endeavor to discuss implications of neuroscience studies for education. However, it is now on its way to become a transdisciplinary field, incorporating findings, theoretical frameworks and methodologies from education, and cognitive and brain sciences. Given the differences and diversity in the originating disciplines, it has been a challenge for educational neuroscience to integrate both theoretical and methodological perspective in education and neuroscience in a coherent way. We present a multi-level framework for educational neuroscience, which argues for integration of multiple levels of analysis, some originating in brain and cognitive sciences, others in education, as a roadmap for the future of educational neuroscience with concrete examples in moral education

    Changes in Cascading Failure Risk with Generator Dispatch Method and System Load Level

    Full text link
    Industry reliability rules increasingly require utilities to study and mitigate cascading failure risk in their system. Motivated by this, this paper describes how cascading failure risk, in terms of expected blackout size, varies with power system load level and pre-contingency dispatch. We used Monte Carlo sampling of random branch outages to generate contingencies, and a model of cascading failure to estimate blackout sizes. The risk associated with different blackout sizes was separately estimated in order to separate small, medium, and large blackout risk. Results from N1N-1 secure models of the IEEE RTS case and a 2383 bus case indicate that blackout risk does not always increase with load level monotonically, particularly for large blackout risk. The results also show that risk is highly dependent on the method used for generator dispatch. Minimum cost methods of dispatch can result in larger long distance power transfers, which can increase cascading failure risk.Comment: Submitted to Transmission and Distribution Conference and Exposition (T&D), 2014 IEEE PE
    corecore