18 research outputs found

    Investigation on Data Adaptation Techniques for Neural Named Entity Recognition

    Get PDF
    Data processing is an important step in various natural language processing tasks. As the commonly used datasets in named entity recognition contain only a limited number of samples, it is important to obtain additional labeled data in an efficient and reliable manner. A common practice is to utilize large monolingual unlabeled corpora. Another popular technique is to create synthetic data from the original labeled data (data augmentation). In this work, we investigate the impact of these two methods on the performance of three different named entity recognition tasks.Comment: ACL SRW 2021 - camera read

    Attention-based bidirectional GRU networks for efficient HTTPS traffic classification

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordDistributed and pervasive web services have become a major platform for sharing information. However, the hypertext transfer protocol secure (HTTPS), which is a crucial web encryption technology for protecting the information security of users, creates a supervisory burden for network management (e.g., quality-of-service guarantees and traffic engineering). Identifying various types of encrypted traffic is crucial for cyber security and network management. In this paper, we propose a novel deep learning model called BGRUA to identify the web services running on HTTPS connections accurately. BGRUA utilizes a bidirectional gated recurrent unit (GRU) and attention mechanism to improve the accuracy of HTTPS traffic classification. The bidirectional GRU is used to extract the forward and backward features of the byte sequences in a session. The attention mechanism is adopted to assign weights to features according to their contributions to classification. Additionally, we investigate the effects of different hyperparameters on the performance of BGRUA and present a set of optimal values that can serve as a basis for future relevant studies. Comparisons to existing methods based on three typical datasets demonstrate that BGRUA outperforms state-of-the-art encrypted traffic classification approaches in terms of accuracy, precision, recall, and F1-score

    SimAnMo — A parallelized runtime model generator

    Get PDF
    In this article, we present the novel features of the recent version of SimAnMo, the Simulated Annealing Modeler. The tool creates models that correlate the size of one input parameter of an application to the corresponding runtime and thus SimAnMo allows predictions for larger input sizes. A focus lies on applications whose runtime grows exponentially in the input parameter size. Such programs are, for example, of high interest for cryptanalysis to analyze practical security of traditional and post‐quantum secure schemes. However, SimAnMo also generates reliable models for the widespread case of polynomial runtime behavior and also for the important case of factorial runtime increase. SimAnMo's model generation is based on a parallelized simulated annealing procedure and heuristically minimizes the costs of a model. Those may rely on different quality metrics. Insights into SimAnMo's software design and its usage are provided. We demonstrate the quality of SimAnMo's models for different algorithms from various application fields. We show that our approach also works well on ARM architectures

    Improving operational ocean models for the Spanish Port Authorities: assessment of the SAMOA coastal forecasting service upgrades

    Get PDF
    The Puertos del Estado SAMOA coastal and port ocean forecast service delivers operational ocean forecasts to the Spanish Port Authorities since 01/2017 (originally set-up for 9 ports). In its second development phase (2019–2021), the SAMOA service has been extended to 31 ports (practically, the whole Spanish Port System). Besides, the next generation of the SAMOA service is being developed. Research is being focused on (1) updating atmospheric forcing (by combining the AEMET HARMONIE 2.5 Km forecasts and the IFS-ECMWF ones), (2) upgrading the circulation model (ROMS), and (3) testing new methodologies to nest SAMOA systems in the Copernicus IBI-MFC regional solution (with emphasis on its 3D hourly dataset). Evaluation of specific model upgrades is here presented. Model sensitivity tests have been assessed using the available in-situ and remoted sensed (i.e., RadarHF) observations. The results show that SAMOA outperforms IBI-MFC in sea level forecasting at meso- and macro-tidal environments. Improvements by the herein proposed upgrades are incremental: some of these set-ups were used in the last SAMOA operational releases (i.e., the SAM_INI and the SAM_ADV ones; the later currently in operations), whereas the latest test (SAM_H3D) ensures more nesting consistency with the IBI-MFC and improves significantly surface currents and sea-surface temperature simulations.The authors acknowledge support from the SAMOA-2 initiative (2018–2021), co-financed by Puertos del Estado (Spain) and the Spanish Port Authorities. This contribution has been conducted using E.U. Copernicus Marine Service Information. Specifically, from its NRT forecast products at the IBI area. Likewise, ocean in-situ and HF-radar observations from the Puertos del Estado monitoring network are also duly acknowledged.Peer ReviewedPostprint (published version

    The current state of research of wire arc additive manufacturing (WAAM): a review

    Get PDF
    Wire arc additive manufacturing is currently rising as the main focus of research groups around the world. This is directly visible in the huge number of new papers published in recent years concerning a lot of different topics. This review is intended to give a proper summary of the international state of research in the area of wire arc additive manufacturing. The addressed topics in this review include but are not limited to materials (e.g., steels, aluminum, copper and titanium), the processes and methods of WAAM, process surveillance and the path planning and modeling of WAAM. The consolidation of the findings of various authors into a unified picture is a core aspect of this review. Furthermore, it intends to identify areas in which work is missing and how different topics can be synergetically combined. A critical evaluation of the presented research with a focus on commonly known mechanisms in welding research and without a focus on additive manufacturing will complete the review

    Ocean Modelling in Support of Operational Ocean and Coastal Services

    Get PDF
    Operational oceanography is maturing rapidly. Its capabilities are being noticeably enhanced in response to a growing demand for regularly updated ocean information. Today, several core forecasting and monitoring services, such as the Copernicus Marine ones focused on global and regional scales, are well-stablished. The sustained availability of oceanography products has favored the proliferation of specific downstream services devoted to coastal monitoring and forecasting. Ocean models are a key component of these operational oceanographic systems (especially in a context marked by the extensive application of dynamical downscaling approaches), and progress in ocean modeling is certainly a driver for the evolution of these services. The goal of this Special Issue is to publish research papers on ocean modeling that benefit model applications that support existing operational oceanographic services. This Special Issue is addressed to an audience with interests in physical oceanography and especially on its operational applications. There is a focus on the numerical modeling needed for a better forecasts in marine environments and using seamless modeling approaches to simulate global to coastal processes

    Survey of quantitative investment strategies in the Russian stock market : Special interest in tactical asset allocation

    Get PDF
    Russia’s financial markets have been an uncharted area when it comes to exploring the performance of investment strategies based on modern portfolio theory. In this thesis, we focus on the country’s stock market and study whether profitable investments can be made while at the same time taking uncertainties, risks, and dependencies into account. We also pay particular interest in tactical asset allocation. The benefit of this approach is that we can utilize time series forecasting methods to produce trading signals in addition to optimization methods. We use two datasets in our empirical applications. The first one consists of nine sectoral indices covering the period from 2008 to 2017, and the other includes altogether 42 stocks listed on the Moscow Exchange covering the years 2011 – 2017. The strategies considered have been divided into five sections. In the first part, we study classical and robust mean-risk portfolios and the modeling of transaction costs. We find that the expected return should be maximized per unit expected shortfall while simultaneously requiring that each asset contributes equally to the portfolio’s tail risk. Secondly, we show that using robust covariance estimators can improve the risk-adjusted returns of minimum variance portfolios. Thirdly, we note that robust optimization techniques are best suited for conservative investors due to the low volatility allocations they produce. In the second part, we employ statistical factor models to estimate higher-order comoments and demonstrate the benefit of the proposed method in constructing risk-optimal and expected utility-maximizing portfolios. In the third part, we utilize the Almgren–Chriss framework and sort the expected returns according to the assumed momentum anomaly. We discover that this method produces stable allocations performing exceptionally well in the market upturn. In the fourth part, we show that forecasts produced by VECM and GARCH models can be used profitably in optimizations based on the Black–Litterman, copula opinion pooling, and entropy pooling models. In the final part, we develop a wealth protection strategy capable of timing market changes thanks to the return predictions based on an ARIMA model. Therefore, it can be stated that it has been possible to make safe and profitable investments in the Russian stock market even when reasonable transaction costs have been taken into account. We also argue that market inefficiencies could have been exploited by structuring statistical arbitrage and other tactical asset allocation-related strategies.Venäjän rahoitusmarkkinat ovat olleet kartoittamatonta aluetta tutkittaessa moderniin portfolioteoriaan pohjautuvien sijoitusstrategioiden käyttäytymistä. Tässä tutkielmassa keskitymme maan osakemarkkinoihin ja tarkastelemme, voidaanko taloudellisesti kannattavia sijoituksia tehdä otettaessa samalla huomioon epävarmuudet, riskit ja riippuvuudet. Kiinnitämme erityistä huomiota myös taktiseen varojen kohdentamiseen. Tämän lähestymistavan etuna on, että optimointimenetelmien lisäksi voimme hyödyntää aikasarjaennustamisen menetelmiä kaupankäyntisignaalien tuottamiseksi. Empiirisissä sovelluksissa käytämme kahta data-aineistoa. Ensimmäinen koostuu yhdeksästä teollisuusindeksistä kattaen ajanjakson 2008–2017, ja toinen sisältää 42 Moskovan pörssiin listattua osaketta kattaen vuodet 2011–2017. Tarkasteltavat strategiat on puolestaan jaoteltu viiteen osioon. Ensimmäisessä osassa tarkastelemme klassisia ja robusteja riski-tuotto -portfolioita sekä kaupankäyntikustannusten mallintamista. Havaitsemme, että odotettua tuottoa on syytä maksimoida suhteessa odotettuun vajeeseen edellyttäen samalla, että jokainen osake lisää sijoitussalkun häntäriskiä yhtä suurella osuudella. Toiseksi osoitamme, että minimivarianssiportfolioiden riskikorjattuja tuottoja voidaan parantaa robusteilla kovarianssiestimaattoreilla. Kolmanneksi toteamme robustien optimointitekniikoiden soveltuvan parhaiten konservatiivisille sijoittajille niiden tuottamien matalan volatiliteetin allokaatioiden ansiosta. Toisessa osassa hyödynnämme tilastollisia faktorimalleja korkeampien yhteismomenttien estimoinnissa ja havainnollistamme ehdotetun metodin hyödyllisyyttä riskioptimaalisten sekä odotettua hyötyä maksimoivien salkkujen rakentamisessa. Kolmannessa osassa käytämme Almgren–Chrissin viitekehystä ja asetamme odotetut tuotot suuruusjärjestykseen oletetun momentum-anomalian mukaisesti. Havaitsemme, että menetelmä tuottaa vakaita allokaatioita menestyen erityisen hyvin noususuhdanteessa. Neljännessä osassa osoitamme, että VECM- että GARCH-mallien tuottamia ennusteita voidaan hyödyntää kannattavasti niin Black–Littermanin malliin kuin kopulanäkemysten ja entropian poolaukseenkin perustuvissa optimoinneissa. Viimeisessä osassa laadimme varallisuuden suojausstrategian, joka kykenee ajoittamaan markkinoiden muutoksia ARIMA-malliin perustuvien tuottoennusteiden ansiosta. Voidaan siis todeta, että Venäjän osakemarkkinoilla on ollut mahdollista tehdä turvallisia ja tuottavia sijoituksia myös silloin kun kohtuulliset kaupankäyntikustannukset on huomioitu. Toiseksi väitämme, että markkinoiden tehottomuutta on voitu hyödyntää suunnittelemalla tilastolliseen arbitraasiin ja muihin taktiseen varojen allokointiin pohjautuvia strategioita
    corecore