675 research outputs found

    Optimal Design of Beam-Based Compliant Mechanisms via Integrated Modeling Frameworks

    Get PDF
    Beam-based Compliant Mechanisms (CMs) are increasingly studied and implemented in precision engineering due to their advantages over the classic rigid-body mechanisms, such as scalability and reduced need for maintenance. Straight beams with uniform cross section are the basic modules in several concepts, and can be analyzed with a large variety of techniques, such as Euler-Bernoulli beam theory, Pseudo-Rigid Body (PRB) method, chain algorithms (e.g.~the Chained Beam-Constraint Model, CBCM) and Finite Element Analysis (FEA). This variety is unquestionably reduced for problems involving special geometries, such as curved or spline beams, variable section beams, nontrivial shapes and, eventually, contacts between bodies. 3D FEA (solid elements) can provide excellent results but the solutions require high computational times. This work compares the characteristics of modern and computationally efficient modeling techniques (1D FEA, PRB method and CBCM), focusing on their applicability in nonstandard problems. In parallel, as an attempt to provide an easy-to-use environment for CM analysis and design, a multi-purpose tool comprising Matlab and modern Computer-Aided Design/Engineering (CAD/CAE) packages is presented. The framework can implement different solvers depending on the adopted behavioral models. Summary tables are reported to guide the designers in the selection of the most appropriate technique and software architecture. The second part of this work reports demonstrative case studies involving either complex shapes of the flexible members or contacts between the members. To improve the clarity, each example has been accurately defined so as to present a specific set of features, which leads in the choice of a technique rather than others. When available, theoretical models are provided for supporting the design studies, which are solved using optimization approaches. Software implementations are discussed throughout the thesis. Starting from previous works found in the literature, this research introduces novel concepts in the fields of constant force CMs and statically balanced CMs. Finally, it provides a first formulation for modeling mutual contacts with the CBCM. For validation purposes, the majority of the computed behaviors are compared with experimental data, obtained from purposely designed test rigs

    Static stability of a three-dimensional space truss

    Get PDF
    In order to deploy large flexible space structures it is necessary to develop support systems that are strong and lightweight. The most recent example of this aerospace design need is vividly evident in the space station solar array assembly. In order to accommodate both weight limitations and strength performance criteria, ABLE Engineering has developed the Folding Articulating Square Truss (FASTMast) support structure. The FASTMast is a space truss/mechanism hybrid that can provide system support while adhering to stringent packaging demands. However, due to its slender nature and anticipated loading, stability characterization is a critical part of the design process. Furthermore, the dire consequences surely to result from a catastrophic instability quickly provide the motivation for careful examination of this problem. The fundamental components of the space station solar array system are the (1) solar array blanket system, (2) FASTMast support structure, and (3) mast canister assembly. The FASTMast once fully deployed from the canister will provide support to the solar array blankets. A unique feature of this structure is that the system responds linearly within a certain range of operating loads and nonlinearly when that range is exceeded. The source of nonlinear behavior in this case is due to a changing stiffness state resulting from an inability of diagonal members to resist applied loads. The principal objective of this study was to establish the failure modes involving instability of the FASTMast structure. Also of great interest during this effort was to establish a reliable analytical approach capable of effectively predicting critical values at which the mast becomes unstable. Due to the dual nature of structural response inherent to this problem, both linear and nonlinear analyses are required to characterize the mast in terms of stability. The approach employed herein is one that can be considered systematic in nature. The analysis begins with one and two-dimensional failure models of the system and its important components. From knowledge gained through preliminary analyses a foundation is developed for three-dimensional analyses of the FASTMast structure. The three-dimensional finite element (FE) analysis presented here involves a FASTMast system one-tenth the size of the actual flight unit. Although this study does not yield failure analysis results that apply directly to the flight article, it does establish a method by which the full-scale mast can be evaluated

    Decision-making and problem-solving methods in automation technology

    Get PDF
    The state of the art in the automation of decision making and problem solving is reviewed. The information upon which the report is based was derived from literature searches, visits to university and government laboratories performing basic research in the area, and a 1980 Langley Research Center sponsored conferences on the subject. It is the contention of the authors that the technology in this area is being generated by research primarily in the three disciplines of Artificial Intelligence, Control Theory, and Operations Research. Under the assumption that the state of the art in decision making and problem solving is reflected in the problems being solved, specific problems and methods of their solution are often discussed to elucidate particular aspects of the subject. Synopses of the following major topic areas comprise most of the report: (1) detection and recognition; (2) planning; and scheduling; (3) learning; (4) theorem proving; (5) distributed systems; (6) knowledge bases; (7) search; (8) heuristics; and (9) evolutionary programming

    Apollo Lightcraft Project

    Get PDF
    This second year of the NASA/USRA-sponsored Advanced Aeronautical Design effort focused on systems integration and analysis of the Apollo Lightcraft. This beam-powered, single-stage-to-orbit vehicle is envisioned as the shuttlecraft of the 21st century. The five person vehicle was inspired largely by the Apollo Command Module, then reconfigured to include a new front seat with dual cockpit controls for the pilot and co-pilot, while still retaining the 3-abreast crew accommodations in the rear seat. The gross liftoff mass is 5550 kg, of which 500 kg is the payload and 300 kg is the LH2 propellant. The round trip cost to orbit is projected to be three orders of magnitude lower than the current space shuttle orbiter. The advanced laser-driven 5-speed combined-cycle engine has shiftpoints at Mach 1, 5, 11 and 25+. The Apollo Lightcraft can climb into low Earth orbit in three minutes, or fly to any spot on the globe in less than 45 minutes. Detailed investigations of the Apollo Lightcraft Project this second year further evolved the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) re-entry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis. The principal new findings are documented. Advanced design efforts for the next academic year (1988/1989) will center on a one meter+ diameter spacecraft: the Lightcraft Technology Demonstrator (LTD). Detailed engineering design and analyses, as well as critical proof-of-concept experiments, will be carried out on this small, near-term machine. As presently conceived, the LTD could be constructed using state of the art components derived from existing liquid chemical rocket engine technology, advanced composite materials, and high power laser optics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 275)

    Get PDF
    This bibliography lists 379 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1991

    Conceptual Study of Rotary-Wing Microrobotics

    Get PDF
    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics. Two methods for fabricating an angled wing were also attempted with photoresist and CrystalBond™ to create an angle of attack. One particular design consisted of the wing designs mounted on a gear which are driven by MEMS actuators. MEMS comb drive actuators were analyzed, simulated and tested as a feasible drive system. The comb drive resonators were also designed orthogonally which successfully rotated a gear without wings. With wings attached to the gear, orthogonal MEMS thermal actuators demonstrated wing rotation with limited success. Multi-disciplinary theoretical expressions were formulated to account for necessary mechanical force, allowable mass for lift, and electrical power requirements. The robot design did not achieve flight, but the small pieces presented in this research with minor modifications are promising for a potential complete robot design under 1 cm2 wingspan. The complete robot design would work best in a symmetrical quad-rotor configuration for simpler maneuverability and control. The military’s method to gather surveillance, reconnaissance and intelligence could be transformed given a MEMS rotary-wing robot’s diminutive size and multi-role capabilities

    Alternative techniques for detection of inaccessible pipe corrosion

    Get PDF
    Testing for corrosion in the petrochemical industry has always been a significant challenge which takes up a large portion of the operating expenditure. Whereas major advancements have been made for the detection of general corrosion, inspection at inaccessible locations, such as at pipe supports, remains a demanding prospect; this signifies the need for an alternative technique, capable of dealing with various surface conditions encountered when testing at such locations including weld patches, T-joints, surface roughness and coatings. Long range guided waves are commonly used to detect relatively severe defects in plain sections of pipe but are less suited to inspection at supports because the support itself gives significant reflection. The reflection coefficient at the support reduces with frequency so it would be beneficial to test at higher frequencies, which can also improve the sensitivity of the test to smaller, pitting-type defects. Following the attractive properties of the Higher Order Mode Cluster (HOMC) proposed by Balasubramaniam et al. (IIT Madras), this research starts by investigating the nature of the mode cluster and shows that the features of this method are essentially those of the A1 mode in the high frequency-thickness regime. The study then goes on to investigate the possibility of exciting a single mode Lamb wave with low dispersion at a frequency-thickness of around 20 MHz-mm. Excitation of the A1 mode was considered because of its relationship with HOMC and due to its non-dispersive nature and low surface motion at such frequency-thickness products; this makes it attractive for inspection at supports since it will be unaffected by the support itself and also by surface roughness and attenuative coatings. The thesis then explores the relative ability of different transducer types for single mode excitation in the medium and high frequency-thickness regimes; here the practical feasibility of exciting the A1 mode at around 20 MHz-mm, in spite of its low surface motion, is investigated. Next, a systematic performance analysis of the A1 mode compared to the existing inspection techniques is carried out and, finally the sensitivity of this technique to realistic 3-D pitting-type holes is established. The thesis shows that the A1 mode is an attractive tool for the detection of localized, sharp, severe defects that will be missed by standard, lower frequency guided wave testing.Open Acces

    Aeronautical engineering: A continuing bibliography with indexes (supplement 306)

    Get PDF
    This bibliography lists 181 reports, articles, and other documents recently introduced into the NASA STI Database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    • …
    corecore