8 research outputs found

    Segmentation and Simulation of Objects Represented in Images using Physical Principles

    Get PDF
    The main goals of the present work are to automatically extract the Contour of an object and to simulate its deformation using a physical approach. In this work, to segment an object represented in an image, an initial contour is manually defined for it that will then automatically evolve until it reaches the border of the desired object. In this approach, the contour is modelled by a physical formulation using the finite element method. and its temporal evolution to the desired final Contour is driven by Internal and external forces. The internal forces are defined by the intrinsic characteristics of the material adopted for the physical model and the interrelation between its nodes. The external forces are determined in function of the image features most suitable for the object to be segmented. To build the physical model of the contour used In the Segmentation process, the isoparametric finite element proposed by Sclaroff is adopted, and to obtain its evolution towards the object border the methodology presented by Nastar is used, that consists in solving the dynamic equilibrium equation between two Consecutive instants. To simulate the deformation between two different instances of an object, after they each have their contours properly modelled, modal analysis, complemented with global optimization techniques, is employed to establish the correspondence between their nodes (data points). After this matching phase, the displacements field between the two contours is simulated using the dynamic equilibrium equation that balances the internal forces defined by the physical model. and the external forces determined by the distance between the two contours

    3D computational simulation and experimental characterization of polymeric stochastic network materials : case studies in reinforced eucalyptus office paper and nanofibrous materials

    Get PDF
    The properties of stochastic fibrous materials like paper and nanowebs are highly dependent on those fibers from which the network structure is made. This work contributes to a better understanding of the effect of fiber properties on the network structural properties, using an original 3D fibrous material model with experimental validation, and its application to different fibrous materials used in reinforced Eucalyptus office paper and nanofibrous networks. To establish the relationships between the fiber and the final structural material properties, an experimental laboratorial plan has been executed for a reinforced fibrous structure, and a physical based 3D model has been developed and implemented. The experimental plan was dedicated to an important Portuguese material: the reinforced Eucalyptus based office paper. Office paper is the principal Portuguese paper industry product. This paper is mainly produced from Eucalyptus globulus bleached kraft pulp with a small incorporation of a softwood pulp to increase paper strength. It is important to access the contribution of different reinforcement pulp fibers with different biometry and coarseness to the final paper properties. The two extremes of reinforcement pulps are represented by a Picea abies kraft softwood pulp, usually considered the best reinforcement fiber, and the Portuguese pine Pinus pinaster kraft pulp. Fiber flexibility was determined experimentally using the Steadman and Luner method with a computerized acquisition device. When comparing two reinforcement fibers, the information about fiber flexibility and biometry is determinant to predict paper properties. The values presented correspond to the two extremes of fibers available as reinforcement fibers, regarding wall thickness, beating ability and flexibility values. Pinus pinaster has the thickest fiber wall, and consequently it is less flexible than the thinner wall fibers: Pinus sylvestris and Picea abies. Experimental results for the evolutions of paper properties, like paper apparent density, air permeability, tensile and tear strength, together with fiber flexibility for the two reinforcement fibers, constitute valuable information, also applicable for other reinforcement fibers, with fiber walls dimensions in this range. After having quantified the influence of fiber flexibility, we identified that this is as a key physical property to be included in our structural model. Therefore, we chose to develop a 3D network model that includes fiber bending in the z direction as an important parameter. The inclusion of fiber flexibility was done for the first time by Niskanen, in a model known as the KCL-Pakka model. We propose an extension of this model, with improvements on the fiber model, as well as an original computational implementation. A simulator has been developed from scratch and the results have been validated experimentally using handmade laboratory structures made from Eucalyptus fibers (hardwood fibers), and also Pinus pinaster, Pinus Sylvestris and Picea abies fibers, which are representative reinforcement fibers. Finally, the model was modified and extended to obtain an original simulator to nanofibrous materials, which is also an important innovation. In the network model developed in this work, the structure is formed by the sequential deposition of fibers, which are modeled individually. The model includes key papermaking fiber properties like morphology, flexibility, and collapsibility and process operations such as fiber deposition, network forming or densification. For the first time, the model considers the fiber microstructure level, including lumen and fiber wall thickness, with a resolution up to 0.05μm for the paper material case and 0.05nm for the nanofibrous materials. The computational simulation model was used to perform simulation studies. In the case of paper materials, it was used to investigate the relative influence of fiber properties such as fiber flexibility, dimensions and collapsibility. The developed multiscale model gave realistic predictions and enabled us to link fiber microstructure and paper properties. In the case of nanofibrous materials, the 3D network model was modified and implemented for Polyamide-6 electrospun and cellulose nanowebs. The influence of computational fiber flexibility and dimensions was investigated. For the Polyamide-6 electrospun network experimental results were compared visually with simulation results and similar evolutions were observed. For cellulose nanowebs the simulation study used literature data to obtain the input information for the nanocellulose fibers. The design of computer experiments was done using a space filling design, namely the Latin hypercube sampling design, and the simulations results were organized and interpreted using regression trees. Both the experimental characterization, and computational modeling, contributed to study the relationships between the polymeric fibers and the network structure formed.As propriedades de materiais estocásticos constituídos por fibras, tais como o papel ou nanoredes poliméricas, dependem fortemente das fibras a partir das quais a estrutura em rede se forma. Este trabalho contribui para uma melhor compreensão da influência das propriedades das fibras nas propriedades estruturais das redes, utilizando um modelo original 3D para materiais constituídos por fibras, com validação experimental, bem como a sua aplicação aos materiais utilizados no papel de escritório de Eucalyptus, com fibras de reforço, e a redes de nanofibras. Para estabelecer as relações entre a fibra e as propriedades estruturais do material, executou-se um planeamento experimental para uma estrutura fibrosa reforçada, e desenvolveu-se e implementou-se um modelo 3D de base física. O plano experimental teve como objecto um material relevante em Portugal: o papel de escritório de Eucalyptus com fibras de reforço. O papel de escritório é o produto principal da indústria de papel Portuguesa. Este tipo de papel é produzido a partir da pasta kraft branqueada de Eucalyptus globulus, com incorporação de uma pequena quantidade de pasta de reforço, “softwood”, para melhorar a resistência do papel. É importante avaliar a contribuição de diferentes fibras de reforço, com biometria e massas linear distinta, nas diferentes propriedades finais do papel. Os dois extremos das fibras de reforço estão representados pela pasta kraft de Picea abies, usualmente considerada a melhor fibra de reforço, e a pasta kraft Portuguesa de Pinus pinaster. A flexibilidade da fibra determinou-se experimentalmente utilizando o método de Steadman e Luner, com um dispositivo de aquisição automatizado. A informação relativa à flexibilidade e biometria da fibra é fundamental para inferir sobre as propriedades do papel. Os valores determinados correspondem a valores dos extremos, paras as fibras de reforço disponíveis no mercado, no que diz respeito a espessura de parede, refinabilidade e valores de flexibilidade. Pode considerar-se a fibra de Pinus pinaster num extremo, sendo a fibra de paredes mais espessas, e consequentemente menos flexível que as fibras de paredes mais finas: Pinus sylvestris e Picea abies. Desta forma, os resultados experimentais obtidos para estas fibras, relativos à evolução de propriedades do papel, nomeadamente densidade, permeabilidade ao ar, resistência à tracção e ao rasgamento, entre outros, constituem informação importante que pode ser aplicada a outras fibras de reforço, que se situem nesta gama. Como consequência lógica da identificação da flexibilidade da fibra como uma propriedade física determinante, e após a quantificação experimental, a escolha do modelo de papel recaiu sobre um modelo que inclui a flexibilidade como propriedade chave. Assim, desenvolvemos um modelo 3D que inclui a flexão das fibras na direcção transversal, isto é, a direcção da espessura do papel, também reconhecida como direcção da coordenada z. A inclusão da flexibilidade da fibra baseia-se no modelo de Niskanen, conhecido como o modelo KCL-Pakka. Apresenta-se uma extensão deste modelo, com modificações no modelo da fibra, bem como uma implementação computacional original. Desenvolveu-se um simulador para matérias em rede, que se validou com resultados experimentais. Efectuaram-se, também, as modificações necessárias para obter um simulador para nanomateriais, o que constitui uma inovação relevante. No modelo deste trabalho, desenvolvido para materiais fibrosos em rede, as fibras modelam-se individualmente e a estrutura forma-se sequencialmente pela sua deposição e conformação à estrutura existente. O modelo inclui propriedades das fibras determinantes, tais como morfologia, flexibilidade e colapsabilidade. Bem como etapas do processo, nomeadamente a deposição das fibras e a formação da rede, isto é, a densificação da estrutura. De uma forma original, o modelo da fibra inclui a espessura do lúmen e da parede da fibra, com uma resolução de 0.05μm para as fibras do papel e 0.05nm no caso das nanofibras. O modelo computacional desenvolvido utilizou-se na realização de estudos de simulação. No caso dos materiais papeleiros, utilizou-se para investigar a influência das propriedades das fibras, tendo-se obtido previsões realistas. No caso dos nanomateriais, o modelo foi modificado e implementado para as fibras electrofiadas de Poliamida-6 e redes de nanocelulose. O plano de experiencias computacionais utilizou uma distribuição no espaço “Latin hypercube” e os resultados das simulações organizaram-se recorrendo a árvores de regressão. Tanto a caracterização experimental, como a modelação computacional, contribuíram com valiosa informação para o estudo das relações entre as fibras poliméricas e as estruturas em rede por elas formadas

    Variable illumination and invariant features for detecting and classifying varnish defects

    Get PDF
    This work presents a method to detect and classify varnish defects on wood surfaces. Since these defects are only partially visible under certain illumination directions, one image doesn\u27t provide enough information for a recognition task. A classification requires inspecting the surface under different illumination directions, which results in image series. The information is distributed along this series and can be extracted by merging the knowledge about the defect shape and light direction

    Hierarchical Bayesian Data Fusion Using Autoencoders

    Get PDF
    In this thesis, a novel method for tracker fusion is proposed and evaluated for vision-based tracking. This work combines three distinct popular techniques into a recursive Bayesian estimation algorithm. First, semi supervised learning approaches are used to partition data and to train a deep neural network that is capable of capturing normal visual tracking operation and is able to detect anomalous data. We compare various methods by examining their respective receiver operating conditions (ROC) curves, which represent the trade off between specificity and sensitivity for various detection threshold levels. Next, we incorporate the trained neural networks into an existing data fusion algorithm to replace its observation weighing mechanism, which is based on the Mahalanobis distance. We evaluate different semi-supervised learning architectures to determine which is the best for our problem. We evaluated the proposed algorithm on the OTB-50 benchmark dataset and compared its performance to the performance of the constituent trackers as well as with previous fusion. Future work involving this proposed method is to be incorporated into an autonomous following unmanned aerial vehicle (UAV)

    Variable illumination and invariant features for detecting and classifying varnish defects

    Get PDF
    This work presents a method to detect and classify varnish defects on wood surfaces. Since these defects are only partially visible under certain illumination directions, one image doesn't provide enough information for a recognition task. A classification requires inspecting the surface under different illumination directions, which results in image series. The information is distributed along this series and can be extracted by merging the knowledge about the defect shape and light direction

    A total hip replacement toolbox : from CT-scan to patient-specific FE analysis

    Get PDF

    Utilização da Norma JPEG2000 para codificar proteger e comercializar Produtos de Observação Terrestre

    Get PDF
    Applications like, change detection, global monitoring, disaster detection and management have emerging requirements that need the availability of large amounts of data. This data is currently being capture by a multiplicity of instruments and EO (Earth Observation) sensors originating large volumes of data that needs to be stored, processed and accessed in order to be useful – as an example, ENVISAT accumulates, in a yearly basis, several hundred terabytes of data. This need to recover, store, process and access brings some interesting challenges, like storage space, processing power, bandwidth and security, just to mention a few. These challenges are still very important on today’s technological world. If we take a look for example at the number of subscribers of ISP (Internet Service Providers) broadband services on the developed world today, one can notice that broadband services are still far from being common and dominant. On the underdeveloped countries the picture is even dimmer, not only from a bandwidth point of view but also in all other aspects regarding information and communication technologies (ICTs). All this challenges need to be taken into account if a service is to reach the broadest audience possible. Obviously protection and securing of services and contents is an extra asset that helps on the preservation of possible business values, especially if we consider such a costly business as the space industry. This thesis presents and describes a system which allows, not only the encoding and decoding of several EO products into a JPEG2000 format, but also supports some of the security requirements identified previously that allows ESA (European Space Agency) and related EO services to define and apply efficient EO data access security policies and even to exploit new ways to commerce EO products over the Internet.Aplicações como, detecção de mudanças no terreno, monitorização planetária, detecção e gestão de desastres, têm necessidades prementes que necessitam de vastas quantidades de dados. Estes dados estão presentemente a ser capturados por uma multiplicidade de instrumentos e sensores de observação terrestre, que originam uma enormidade de dados que necessitam de ser armazenados processados e acedidos de forma a se tornarem úteis – por exemplo, a ENVISAT acumula anualmente varias centenas de terabytes de dados. Esta necessidade de recuperar, armazenar, processar e aceder introduz alguns desafios interessantes como o espaço de armazenamento, poder de processamento, largura de banda e segurança dos dados só para mencionar alguns. Estes desafios são muito importantes no mundo tecnológico de hoje. Se olharmos, por exemplo, ao número actual de subscritores de ISP (Internet Service Providers) de banda larga nos países desenvolvidos podemos ficar surpreendidos com o facto do número de subscritores desses serviços ainda não ser uma maioria da população ou dos agregados familiares. Nos países subdesenvolvidos o quadro é ainda mais negro não só do ponto de vista da largura de banda mas também de todos os outros aspectos relacionados com Tecnologias da Informação e Comunicação (TICs). Todos estes aspectos devem ser levados em consideração se se pretende que um serviço se torne o mais abrangente possível em termos de audiências. Obviamente a protecção e segurança dos conteúdos é um factor extra que ajuda a preservar possíveis valores de negócio, especialmente considerando industrias tão onerosas como a Industria Espacial. Esta tese apresenta e descreve um sistema que permite, não só a codificação e descodificação de diversos produtos de observação terrestre para formato JPEG2000 mas também o suporte de alguns requisitos de segurança identificados previamente que permitem, á Agência Espacial Europeia e a outros serviços relacionados com observação terrestre, a aplicação de politicas eficientes de acesso seguro a produtos de observação terrestre, permitindo até o aparecimento de novas forma de comercialização de produtos de observação terrestre através da Internet

    Simulación dinámica y deformaciones de superfícies paramétricas

    Get PDF
    Se desarrolla un modelo basado en NURBS, BSplines4D, de representación de superficies parametrizadas en 4D. El objetivo es la representación y simulación dinámica de superficies deformables basadas en el modelo; se realiza un estudio de las ecuaciones del movimiento, asociando un funcional de energía para medir la deformación de objetos, realizando un estudio riguroso sobre los métodos de integración y de discretización, tanto temporal como espacial, determinando su adecuación para resolver el sistema de ecuaciones diferenciales generado. El movimiento y la simulación de la deformación se realizan exclusivamente usando los puntos de control 4D, obteniendo una eficiencia numérica y computacional excelentes. La determinación del modelo BSplines4D se realiza tras un estudio pormenorizado de los modelos existentes. También se ha utilizado para desarrollar un modelo, N-Scodef, de deformaciones de formas libres (FFD), utilizando deformaciones geométricas basadas en restricciones. Se han establecido las condiciones para aplicar restricciones con trayectorias no rectilíneas, representadas por curvas B-Spline 4D. La deformación se adapta de forma precisa a la forma descrita por las curvasEs desenvolupa un model basat en NURBS, Bsplines4D, de representació de superfícies parametritzades en 4D. L'objectiu és la representació i simulació dinàmica de superfícies deformables basades en el model; es realitza un estudi de les equacions del moviment, associant un funcional d'energia per mesurar la deformació d'objectes, realitzant un estudi rigorós sobre els mètodes d'integració i discretització, tant temporal com espacial, determinant la seva adequació per resoldre el sistema d'equacions diferencials generat. El moviment i la simulació de la deformació es realitzen exclusivament utilitzant els punts de control 4D, obtenint una eficiència numèrica i computacional excel·lents. La determinació del model Bsplines4D es realitza després d'un estudi detallat dels models existents. També s'ha utilitzat per desenvolupar un model, N-Scodef, de deformacions de formes lliures (FFD), utilitzant deformacions geomètriques basades en restriccions. S'han establert les condicions per aplicar restriccions amb trajectòries no rectilínies, representades per corbes B-Spline 4D. La deformació s'adapta de forma precisa a la forma descrita per les corbesBsplines4D, a NURBS based model, is presented. The model allows the representation of 4D parameterized surfaces. The objective is the representation and dynamic simulation of deformable surfaces based on this model; a study of the movement equations has been made, associating to them an energy functional to measure the objects' deformation. A rigorous study on the integration and discretization, both temporal and spatial, is made to evaluate its suitability to solve the system of differential equations generated. The movement and simulation of the deformation is performed only using the 4D control points. An excellent numeric and computational efficiency is achieved. The Bsplines4D model is obtained after a detailed study on the existent models. The model has been also used to develop a free-form deformable (FFD) model, N-Scodef, using geometric constraint-based deformations. The conditions to apply constraints with non rectilinear trajectories, based on 4D B-Spline curves, have been established. The deformations fit precisely to the curves form
    corecore