44 research outputs found

    GPT-MolBERTa: GPT Molecular Features Language Model for molecular property prediction

    Full text link
    With the emergence of Transformer architectures and their powerful understanding of textual data, a new horizon has opened up to predict the molecular properties based on text description. While SMILES are the most common form of representation, they are lacking robustness, rich information and canonicity, which limit their effectiveness in becoming generalizable representations. Here, we present GPT-MolBERTa, a self-supervised large language model (LLM) which uses detailed textual descriptions of molecules to predict their properties. A text based description of 326000 molecules were collected using ChatGPT and used to train LLM to learn the representation of molecules. To predict the properties for the downstream tasks, both BERT and RoBERTa models were used in the finetuning stage. Experiments show that GPT-MolBERTa performs well on various molecule property benchmarks, and approaching state of the art performance in regression tasks. Additionally, further analysis of the attention mechanisms show that GPT-MolBERTa is able to pick up important information from the input textual data, displaying the interpretability of the model.Comment: Paper has 17 pages, 4 figures and 4 tables, along with 71 reference

    Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    Get PDF
    [Abstract] Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure鈥揂ctivity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron鈥揂strocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.Galicia. Conseller铆a de Cultura, Educaci贸n e Ordenaci贸n Universitaria; GRC2014/049Galicia. Conseller铆a de Cultura, Educaci贸n e Ordenaci贸n Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028

    Novel Architectures and Optimization Algorithms for Training Neural Networks and Applications

    Get PDF
    The two main areas of Deep Learning are Unsupervised and Supervised Learning. Unsupervised Learning studies a class of data processing problems in which only descriptions of objects are known, without label information. Generative Adversarial Networks (GANs) have become among the most widely used unsupervised neural net models. GAN combines two neural nets, generative and discriminative, that work simultaneously. We introduce a new family of discriminator loss functions that adopts a weighted sum of real and fake parts, which we call adaptive weighted loss functions. Using the gradient information, we can adaptively choose weights to train a discriminator in the direction that benefits the GAN\u27s stability. Also, we propose several improvements to the GAN training schemes. One is self-correcting optimization for training a GAN discriminator on Speech Enhancement tasks, which helps avoid ``harmful\u27\u27 training directions for parts of the discriminator loss. The other improvement is a consistency loss, which targets the inconsistency in time and time-frequency domains caused by Fourier Transforms. Contrary to Unsupervised Learning, Supervised Learning uses labels for each object, and it is required to find the relationship between objects and labels. Building computing methods to interpret and represent human language automatically is known as Natural Language Processing which includes tasks such as word prediction, machine translation, etc. In this area, we propose a novel Neumann-Cayley Gated Recurrent Unit (NC-GRU) architecture based on a Neumann series-based Scaled Cayley transformation. The NC-GRU uses orthogonal matrices to prevent exploding gradient problems and enhance long-term memory on various prediction tasks. In addition, we propose using our newly introduced NC-GRU unit inside Neural Nets model to create neural molecular fingerprints. Integrating novel NC-GRU fingerprints and Multi-Task Deep Neural Networks schematics help to improve the performance of several molecular-related tasks. We also introduce a new normalization method - Assorted-Time Normalization, that helps to preserve information from multiple consecutive time steps and normalize using them in Recurrent Nets like architectures. Finally, we propose a Symmetry Structured Convolutional Neural Network (SCNN), an architecture with 2D structured symmetric features over spatial dimensions, that generates and preserves the symmetry structure in the network\u27s convolutional layers
    corecore