17,348 research outputs found

    An implicit algorithm for validated enclosures of the solutions to variational equations for ODEs

    Full text link
    We propose a new algorithm for computing validated bounds for the solutions to the first order variational equations associated to ODEs. These validated solutions are the kernel of numerics computer-assisted proofs in dynamical systems literature. The method uses a high-order Taylor method as a predictor step and an implicit method based on the Hermite-Obreshkov interpolation as a corrector step. The proposed algorithm is an improvement of the C1C^1-Lohner algorithm proposed by Zgliczy\'nski and it provides sharper bounds. As an application of the algorithm, we give a computer-assisted proof of the existence of an attractor set in the R\"ossler system, and we show that the attractor contains an invariant and uniformly hyperbolic subset on which the dynamics is chaotic, that is, conjugated to subshift of finite type with positive topological entropy.Comment: 33 pages, 11 figure

    Hidden attractors in fundamental problems and engineering models

    Full text link
    Recently a concept of self-excited and hidden attractors was suggested: an attractor is called a self-excited attractor if its basin of attraction overlaps with neighborhood of an equilibrium, otherwise it is called a hidden attractor. For example, hidden attractors are attractors in systems with no equilibria or with only one stable equilibrium (a special case of multistability and coexistence of attractors). While coexisting self-excited attractors can be found using the standard computational procedure, there is no standard way of predicting the existence or coexistence of hidden attractors in a system. In this plenary survey lecture the concept of self-excited and hidden attractors is discussed, and various corresponding examples of self-excited and hidden attractors are considered

    Computed Chaos or Numerical Errors

    Get PDF
    Discrete numerical methods with finite time-steps represent a practical technique to solve initial-value problems involving nonlinear differential equations. These methods seem particularly useful to the study of chaos since no analytical chaotic solution is currently available. Using the well-known Lorenz equations as an example, it is demonstrated that numerically computed results and their associated statistical properties are time-step dependent. There are two reasons for this behavior. First, chaotic differential equations are unstable so that any small error is amplified exponentially near an unstable manifold. The more serious and lesser-known reason is that stable and unstable manifolds of singular points associated with differential equations can form virtual separatrices. The existence of a virtual separatrix presents the possibility of a computed trajectory actually jumping through it due to the finite time-steps of discrete numerical methods. Such behavior violates the uniqueness theory of differential equations and amplifies the numerical errors explosively. These reasons imply that, even if computed results are bounded, their independence on time-step should be established before accepting them as useful numerical approximations to the true solution of the differential equations. However, due to these exponential and explosive amplifications of numerical errors, no computed chaotic solutions of differential equations independent of integration-time step have been found. Thus, reports of computed non-periodic solutions of chaotic differential equations are simply consequences of unstably amplified truncation errors, and are not approximate solutions of the associated differential equations.Comment: pages 24, Figures
    corecore