52,002 research outputs found

    Computational Methods for Identification and Modelling of Complex Biological Systems

    Get PDF
    3 pages,-- Editorial.-- This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedMathematical and computational models are key tools for understanding biological phenomena. In the last decades, scientific and technological advances have facilitated their evergrowing adoption in biologically oriented research. The strongly interdisciplinary character of these areas, in which biologistswork alongwith researchers fromphysical sciences, engineering, and medicine, fosters the cross-fertilization between scientific fields. However, the large degree of structural and parametric uncertainty typically associated with biological processesmakes it nontrivial to analyze them using techniques imported from fields in which these issues are less prevalent. Thus, there is a need for new methodological developments that fill this gap. The present special issue addresses this need by providing an overview of current open problems and presenting recent results regarding mathematical inference and modelling of biological systemsPeer reviewe

    Instantaneous modelling and reverse engineering of data-consistent prime models in seconds!

    Get PDF
    A theoretical framework that supports automated construction of dynamic prime models purely from experimental time series data has been invented and developed, which can automatically generate (construct) data-driven models of any time series data in seconds. This has resulted in the formulation and formalisation of new reverse engineering and dynamic methods for automated systems modelling of complex systems, including complex biological, financial, control, and artificial neural network systems. The systems/model theory behind the invention has been formalised as a new, effective and robust system identification strategy complementary to process-based modelling. The proposed dynamic modelling and network inference solutions often involve tackling extremely difficult parameter estimation challenges, inferring unknown underlying network structures, and unsupervised formulation and construction of smart and intelligent ODE models of complex systems. In underdetermined conditions, i.e., cases of dealing with how best to instantaneously and rapidly construct data-consistent prime models of unknown (or well-studied) complex system from small-sized time series data, inference of unknown underlying network of interaction is more challenging. This article reports a robust step-by-step mathematical and computational analysis of the entire prime model construction process that determines a model from data in less than a minute

    Cyclin-dependent kinases as drug targets for cell growth and proliferation disorders. A role for systems biology approach in drug development. Part II - CDKs as drug targets in hypertrophic cell growth. Modelling of drugs targeting CDKs

    Get PDF
    Cyclin-dependent kinases (CDKs) are key regulators of cell growth and proliferation. Impaired regulation of their activity leads to various diseases such as cancer and heart hypertrophy. Consequently, a number of CDKs are considered as targets for drug discovery. We review the development of inhibitors of CDK2 as anti-cancer drugs in the first part of the paper and in the second part, respectively, the development of inhibitors of CDK9 as potential therapeutics for heart hypertrophy. We argue that the above diseases are systems biology, or network diseases. In order to fully understand the complexity of the cell growth and proliferation disorders, in addition to experimental sciences, a systems biology approach, involving mathematical and computational modelling ought to be employed

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    Engineering simulations for cancer systems biology

    Get PDF
    Computer simulation can be used to inform in vivo and in vitro experimentation, enabling rapid, low-cost hypothesis generation and directing experimental design in order to test those hypotheses. In this way, in silico models become a scientific instrument for investigation, and so should be developed to high standards, be carefully calibrated and their findings presented in such that they may be reproduced. Here, we outline a framework that supports developing simulations as scientific instruments, and we select cancer systems biology as an exemplar domain, with a particular focus on cellular signalling models. We consider the challenges of lack of data, incomplete knowledge and modelling in the context of a rapidly changing knowledge base. Our framework comprises a process to clearly separate scientific and engineering concerns in model and simulation development, and an argumentation approach to documenting models for rigorous way of recording assumptions and knowledge gaps. We propose interactive, dynamic visualisation tools to enable the biological community to interact with cellular signalling models directly for experimental design. There is a mismatch in scale between these cellular models and tissue structures that are affected by tumours, and bridging this gap requires substantial computational resource. We present concurrent programming as a technology to link scales without losing important details through model simplification. We discuss the value of combining this technology, interactive visualisation, argumentation and model separation to support development of multi-scale models that represent biologically plausible cells arranged in biologically plausible structures that model cell behaviour, interactions and response to therapeutic interventions

    Qualitative System Identification from Imperfect Data

    Full text link
    Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models. Typically, this has come to mean the identification of quantitative models expressed as differential equations. Quantitative modelling works best when the structure of the model (i.e., the form of the equations) is known; and the primary concern is one of estimating the values of the parameters in the model. For complex biological systems, the model-structure is rarely known and the modeler has to deal with both model-identification and parameter-estimation. In this paper we are concerned with providing automated assistance to the first of these problems. Specifically, we examine the identification by machine of the structural relationships between experimentally observed variables. These relationship will be expressed in the form of qualitative abstractions of a quantitative model. Such qualitative models may not only provide clues to the precise quantitative model, but also assist in understanding the essence of that model. Our position in this paper is that background knowledge incorporating system modelling principles can be used to constrain effectively the set of good qualitative models. Utilising the model-identification framework provided by Inductive Logic Programming (ILP) we present empirical support for this position using a series of increasingly complex artificial datasets. The results are obtained with qualitative and quantitative data subject to varying amounts of noise and different degrees of sparsity. The results also point to the presence of a set of qualitative states, which we term kernel subsets, that may be necessary for a qualitative model-learner to learn correct models. We demonstrate scalability of the method to biological system modelling by identification of the glycolysis metabolic pathway from data

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
    • …
    corecore