69,350 research outputs found

    Character N-Grams for Detecting Deceptive Controversial Opinions

    Full text link
    [EN] Controversial topics are present in the everyday life, and opinions about them can be either truthful or deceptive. Deceptive opinions are emitted to mislead other people in order to gain some advantage. In the most of the cases humans cannot detect whether the opinion is deceptive or truthful, however, computational approaches have been used successfully for this purpose. In this work, we evaluate a representation based on character n-grams features for detecting deceptive opinions. We consider opinions on the following: abortion, death penalty and personal feelings about the best friend; three domains studied in the state of the art. We found character n-grams effective for detecting deception in these controversial domains, even more than using psycholinguistic features. Our results indicate that this representation is able to capture relevant information about style and content useful for this task. This fact allows us to conclude that the proposed one is a competitive text representation with a good trade-off between simplicity and performance.We would like to thank CONACyT for partially supporting this work under grants 613411, CB-2015-01-257383, and FC-2016/2410. The work of the last author was partially funded by the Spanish MINECO under the research project SomEMBED (TIN2015-71147-C2-1-P).Sánchez-Junquera, JJ.; Luis Villaseñor Pineda; Montes Gomez, M.; Rosso, P. (2018). Character N-Grams for Detecting Deceptive Controversial Opinions. Lecture Notes in Computer Science. 11018:135-140. https://doi.org/10.1007/978-3-319-98932-7_13S13514011018Aritsugi, M., et al.: Combining word and character n-grams for detecting deceptive opinions, vol. 1, pp. 828–833. IEEE (2017)Buller, D.B., Burgoon, J.K.: Interpersonal deception theory. Commun. Theory 6(3), 203–242 (1996)Cagnina, L.C., Rosso, P.: Detecting deceptive opinions: intra and cross-domain classification using an efficient representation. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 25(Suppl. 2), 151–174 (2017)Feng, S., Banerjee, R., Choi, Y.: Syntactic stylometry for deception detection, pp. 171–175. Association for Computational Linguistics (2012)Fusilier, D.H., Montes-y-Gómez, M., Rosso, P., Cabrera, R.G.: Detection of opinion spam with character n-grams. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 285–294. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18117-2_21Hernández-Castañeda, Á., Calvo, H., Gelbukh, A., Flores, J.J.G.: Cross-domain deception detection using support vector networks. Soft Comput. 21(3), 1–11 (2016)Mihalcea, R., Strapparava, C.: The lie detector: explorations in the automatic recognition of deceptive language. In: Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pp. 309–312. Association for Computational Linguistics (2009)Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by any stretch of the imagination. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 309–319. Association for Computational Linguistics (2011)Pérez-Rosas, V., Mihalcea, R.: Cross-cultural deception detection. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 440–445 (2014)Sapkota, U., Solorio, T., Montes-y-Gómez, M., Bethard, S.: Not all character n-grams are created equal: a study in authorship attribution. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 93–102 (2015)Vrij, A.: Detecting Lies and Deceit: Pitfalls and Opportunities. Wiley, Hoboken (2008

    Discourse Structure in Machine Translation Evaluation

    Full text link
    In this article, we explore the potential of using sentence-level discourse structure for machine translation evaluation. We first design discourse-aware similarity measures, which use all-subtree kernels to compare discourse parse trees in accordance with the Rhetorical Structure Theory (RST). Then, we show that a simple linear combination with these measures can help improve various existing machine translation evaluation metrics regarding correlation with human judgments both at the segment- and at the system-level. This suggests that discourse information is complementary to the information used by many of the existing evaluation metrics, and thus it could be taken into account when developing richer evaluation metrics, such as the WMT-14 winning combined metric DiscoTKparty. We also provide a detailed analysis of the relevance of various discourse elements and relations from the RST parse trees for machine translation evaluation. In particular we show that: (i) all aspects of the RST tree are relevant, (ii) nuclearity is more useful than relation type, and (iii) the similarity of the translation RST tree to the reference tree is positively correlated with translation quality.Comment: machine translation, machine translation evaluation, discourse analysis. Computational Linguistics, 201

    Fine-tuning Multi-hop Question Answering with Hierarchical Graph Network

    Full text link
    In this paper, we present a two stage model for multi-hop question answering. The first stage is a hierarchical graph network, which is used to reason over multi-hop question and is capable to capture different levels of granularity using the nature structure(i.e., paragraphs, questions, sentences and entities) of documents. The reasoning process is convert to node classify task(i.e., paragraph nodes and sentences nodes). The second stage is a language model fine-tuning task. In a word, stage one use graph neural network to select and concatenate support sentences as one paragraph, and stage two find the answer span in language model fine-tuning paradigm.Comment: the experience result is not as good as I excep
    corecore