162,164 research outputs found

    A roadmap to integrated digital public health surveillance: The vision and the challenges

    Get PDF
    The exponentially increasing stream of real time big data produced by Web 2.0 Internet and mobile networks created radically new interdisciplinary challenges for public health and computer science. Traditional public health disease surveillance systems have to utilize the potential created by new situationaware realtime signals from social media, mobile/sensor networks and citizens' participatory surveillance systems providing invaluable free realtime event-based signals for epidemic intelligence. However, rather than improving existing isolated systems, an integrated solution bringing together existing epidemic intelligence systems scanning news media (e.g., GPHIN, MedISys) with real-time social media intelligence (e.g., Twitter, participatory systems) is required to substantially improve and automate early warning, outbreak detection and preparedness operations. However, automatic monitoring and novel verification methods for these multichannel event-based real time signals has to be integrated with traditional case-based surveillance systems from microbiological laboratories and clinical reporting. Finally, the system needs effectively support coordination of epidemiological teams, risk communication with citizens and implementation of prevention measures. However, from computational perspective, signal detection, analysis and verification of very high noise realtime big data provide a number of interdisciplinary challenges for computer science. Novel approaches integrating current systems into a digital public health dashboard can enhance signal verification methods and automate the processes assisting public health experts in providing better informed and more timely response. In this paper, we describe the roadmap to such a system, components of an integrated public health surveillance services and computing challenges to be resolved to create an integrated real world solution

    X-ware: a proof of concept malware utilizing artificial intelligence

    Get PDF
    Recent years have witnessed a dramatic growth in utilizing computational intelligence techniques for various domains. Coherently, malicious actors are expected to utilize these techniques against current security solutions. Despite the importance of these new potential threats, there remains a paucity of evidence on leveraging these research literature techniques. This article investigates the possibility of combining artificial neural networks and swarm intelligence to generate a new type of malware. We successfully created a proof of concept malware named X-ware, which we tested against the Windows-based systems. Developing this proof of concept may allow us to identify this potential threat’s characteristics for developing mitigation methods in the future. Furthermore, a method for recording the virus’s behavior and propagation throughout a file system is presented. The proposed virus prototype acts as a swarm system with a neural network-integrated for operations. The virus’s behavioral data is recorded and shown under a complex network format to describe the behavior and communication of the swarm. This paper has demonstrated that malware strengthened with computational intelligence is a credible threat. We envisage that our study can be utilized to assist current and future security researchers to help in implementing more effective countermeasure

    Analysis of Neighbourhoods in Multi-layered Dynamic Social Networks

    Full text link
    Social networks existing among employees, customers or users of various IT systems have become one of the research areas of growing importance. A social network consists of nodes - social entities and edges linking pairs of nodes. In regular, one-layered social networks, two nodes - i.e. people are connected with a single edge whereas in the multi-layered social networks, there may be many links of different types for a pair of nodes. Nowadays data about people and their interactions, which exists in all social media, provides information about many different types of relationships within one network. Analysing this data one can obtain knowledge not only about the structure and characteristics of the network but also gain understanding about semantic of human relations. Are they direct or not? Do people tend to sustain single or multiple relations with a given person? What types of communication is the most important for them? Answers to these and more questions enable us to draw conclusions about semantic of human interactions. Unfortunately, most of the methods used for social network analysis (SNA) may be applied only to one-layered social networks. Thus, some new structural measures for multi-layered social networks are proposed in the paper, in particular: cross-layer clustering coefficient, cross-layer degree centrality and various versions of multi-layered degree centralities. Authors also investigated the dynamics of multi-layered neighbourhood for five different layers within the social network. The evaluation of the presented concepts on the real-world dataset is presented. The measures proposed in the paper may directly be used to various methods for collective classification, in which nodes are assigned to labels according to their structural input features.Comment: 16 pages, International Journal of Computational Intelligence System
    • …
    corecore