2,186 research outputs found

    Advanced Feature Learning and Representation in Image Processing for Anomaly Detection

    Get PDF
    Techniques for improving the information quality present in imagery for feature extraction are proposed in this thesis. Specifically, two methods are presented: soft feature extraction and improved Evolution-COnstructed (iECO) features. Soft features comprise the extraction of image-space knowledge by performing a per-pixel weighting based on an importance map. Through soft features, one is able to extract features relevant to identifying a given object versus its background. Next, the iECO features framework is presented. The iECO features framework uses evolutionary computation algorithms to learn an optimal series of image transforms, specific to a given feature descriptor, to best extract discriminative information. That is, a composition of image transforms are learned from training data to present a given feature descriptor with the best opportunity to extract its information for the application at hand. The proposed techniques are applied to an automatic explosive hazard detection application and significant results are achieved

    Feature and Decision Level Fusion Using Multiple Kernel Learning and Fuzzy Integrals

    Get PDF
    The work collected in this dissertation addresses the problem of data fusion. In other words, this is the problem of making decisions (also known as the problem of classification in the machine learning and statistics communities) when data from multiple sources are available, or when decisions/confidence levels from a panel of decision-makers are accessible. This problem has become increasingly important in recent years, especially with the ever-increasing popularity of autonomous systems outfitted with suites of sensors and the dawn of the ``age of big data.\u27\u27 While data fusion is a very broad topic, the work in this dissertation considers two very specific techniques: feature-level fusion and decision-level fusion. In general, the fusion methods proposed throughout this dissertation rely on kernel methods and fuzzy integrals. Both are very powerful tools, however, they also come with challenges, some of which are summarized below. I address these challenges in this dissertation. Kernel methods for classification is a well-studied area in which data are implicitly mapped from a lower-dimensional space to a higher-dimensional space to improve classification accuracy. However, for most kernel methods, one must still choose a kernel to use for the problem. Since there is, in general, no way of knowing which kernel is the best, multiple kernel learning (MKL) is a technique used to learn the aggregation of a set of valid kernels into a single (ideally) superior kernel. The aggregation can be done using weighted sums of the pre-computed kernels, but determining the summation weights is not a trivial task. Furthermore, MKL does not work well with large datasets because of limited storage space and prediction speed. These challenges are tackled by the introduction of many new algorithms in the following chapters. I also address MKL\u27s storage and speed drawbacks, allowing MKL-based techniques to be applied to big data efficiently. Some algorithms in this work are based on the Choquet fuzzy integral, a powerful nonlinear aggregation operator parameterized by the fuzzy measure (FM). These decision-level fusion algorithms learn a fuzzy measure by minimizing a sum of squared error (SSE) criterion based on a set of training data. The flexibility of the Choquet integral comes with a cost, however---given a set of N decision makers, the size of the FM the algorithm must learn is 2N. This means that the training data must be diverse enough to include 2N independent observations, though this is rarely encountered in practice. I address this in the following chapters via many different regularization functions, a popular technique in machine learning and statistics used to prevent overfitting and increase model generalization. Finally, it is worth noting that the aggregation behavior of the Choquet integral is not intuitive. I tackle this by proposing a quantitative visualization strategy allowing the FM and Choquet integral behavior to be shown simultaneously

    Kernel Matrix-Based Heuristic Multiple Kernel Learning

    Get PDF
    Kernel theory is a demonstrated tool that has made its way into nearly all areas of machine learning. However, a serious limitation of kernel methods is knowing which kernel is needed in practice. Multiple kernel learning (MKL) is an attempt to learn a new tailored kernel through the aggregation of a set of valid known kernels. There are generally three approaches to MKL: fixed rules, heuristics, and optimization. Optimization is the most popular; however, a shortcoming of most optimization approaches is that they are tightly coupled with the underlying objective function and overfitting occurs. Herein, we take a different approach to MKL. Specifically, we explore different divergence measures on the values in the kernel matrices and in the reproducing kernel Hilbert space (RKHS). Experiments on benchmark datasets and a computer vision feature learning task in explosive hazard detection demonstrate the effectiveness and generalizability of our proposed methods

    Extension of the fuzzy integral for general fuzzy set-valued information

    Get PDF
    The fuzzy integral (FI) is an extremely flexible aggregation operator. It is used in numerous applications, such as image processing, multicriteria decision making, skeletal age-at-death estimation, and multisource (e.g., feature, algorithm, sensor, and confidence) fusion. To date, a few works have appeared on the topic of generalizing Sugeno's original real-valued integrand and fuzzy measure (FM) for the case of higher order uncertain information (both integrand and measure). For the most part, these extensions are motivated by, and are consistent with, Zadeh's extension principle (EP). Namely, existing extensions focus on fuzzy number (FN), i.e., convex and normal fuzzy set- (FS) valued integrands. Herein, we put forth a new definition, called the generalized FI (gFI), and efficient algorithm for calculation for FS-valued integrands. In addition, we compare the gFI, numerically and theoretically, with our non-EP-based FI extension called the nondirect FI (NDFI). Examples are investigated in the areas of skeletal age-at-death estimation in forensic anthropology and multisource fusion. These applications help demonstrate the need and benefit of the proposed work. In particular, we show there is not one supreme technique. Instead, multiple extensions are of benefit in different contexts and applications

    DEEP LEARNING METHODS FOR MULTIBAND EXPLOSIVE HAZARD DETECTION USING L-BAND AND X-BAND FORWARD-LOOKING GROUND-PENETRATING RADAR

    Get PDF
    Explosive hazards are one of the most deadly threats in modern conflicts. The U.S. Army is interested in a reliable way to detect these hazards at range. A promising way of accomplishing this task is using a forward-looking ground-penetrating radar (FLGPR) system. Recently, the Army has been testing a system that utilizes both L-band and X-band radar arrays on a vehicle mounted platform. Using data from this system, we sought to improve the performance of a constant false-alarm-rate (CFAR) prescreener through the use of three deep learning architechtures; deep belief networks (DBNs), stacked denoising autoencoders (SDAEs), and convolutional neural networks (CNNs). We also compare these deep learning classifiers with two more conventional shallow learning classifiers; single kernel support vector machines (SKSVMs) and multiple kernel learning group lasso (MKLGL). By training the deep learners on a combination of image features and comparing the test results to the conventional shallow learners, we were able to significantly increase the probability of detection over both the CFAR prescreener and the shallow learners while maintaining a nominal number of false alarms per square meter. Our research shows that deep learners are a good candidate for improving detection rates in FLGPR systems

    Engineering Research 2014

    Get PDF
    Table of Contents Health Sensing & Imaging Semiconductors Innovation Peoplehttps://digitalcommons.mtu.edu/engineering-magazine/1010/thumbnail.jp

    Leveraging emerging technologies to enable environmental monitoring and accountability in conflict zones

    Get PDF
    The growth of access to the internet, wide availability of smart phones and increased public access to remote sensing data from hundreds of satellite systems have spurred a revolution in tracking the linkages between armed conflict and environmental damage. Over the last decade, a growing community of open-source investigative experts, environmentalists, academics and civil society groups have applied these methods to document war crimes, human rights violations and environmental degradation. These developments have created new opportunities for building accountability and transparency. The wealth of data on conflict-linked environmental damage has already been successfully leveraged to address acute and long-term environmental health risks and inform humanitarian response and post-conflict environmental assessments in Iraq, Syria and Ukraine. There are, however, larger questions on how to best make use of these data streams and information layers, and how to navigate the opportunities and limitations of these developments. This article will outline the new developments in this field and provide recommendations to ensure that data is used responsibly and effectively to strengthen accountability for environmental damages as a result of armed conflict

    Electrical and Computer Engineering Annual Report 2017

    Get PDF
    Early Career Awards Faculty Directory Faculty Highlights Special Report: Mobility at Michigan Tech Faculty Publications Staff Profile & Directory Graduate Student Research Accelerated Master\u27s Degree Graduate Student Awards & Degrees Undergraduate Highlights Senior Design Enterprise Undergraduate Student Awards & Advisory Grants & Contracts Departmental Statistics A Pioneer\u27s Storyhttps://digitalcommons.mtu.edu/ece-annualreports/1001/thumbnail.jp
    • …
    corecore