6,762 research outputs found

    MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2.

    Get PDF
    MicroRNAs (miRNAs) have emerged as key players in cancer progression and metastatic initiation yet their importance in regulating prostate cancer (PCa) metastasis to bone has begun to be appreciated. We employed multimodal strategy based on in-house PCa clinical samples, publicly available TCGA cohorts, a panel of cell lines, in silico analyses, and a series of in vitro and in vivo assays to investigate the role of miR-466 in PCa. Expression analyses revealed that miR-466 is under-expressed in PCa compared to normal tissues. Reconstitution of miR-466 in metastatic PCa cell lines impaired their oncogenic functions such as cell proliferation, migration/invasion and induced cell cycle arrest, and apoptosis compared to control miRNA. Conversely, attenuation of miR-466 in normal prostate cells induced tumorigenic characteristics. miR-466 suppressed PCa growth and metastasis through direct targeting of bone-related transcription factor RUNX2. Overexpression of miR-466 caused a marked downregulation of integrated network of RUNX2 target genes such as osteopontin, osteocalcin, ANGPTs, MMP11 including Fyn, pAkt, FAK and vimentin that are known to be involved in migration, invasion, angiogenesis, EMT and metastasis. Xenograft models indicate that miR-466 inhibits primary orthotopic tumor growth and spontaneous metastasis to bone. Receiver operating curve and Kaplan-Meier analyses show that miR-466 expression can discriminate between malignant and normal prostate tissues; and can predict biochemical relapse. In conclusion, our data strongly suggests miR-466-mediated attenuation of RUNX2 as a novel therapeutic approach to regulate PCa growth, particularly metastasis to bone. This study is the first report documenting the anti-bone metastatic role and clinical significance of miR-466 in prostate cancer

    An Automatic Level Set Based Liver Segmentation from MRI Data Sets

    Get PDF
    A fast and accurate liver segmentation method is a challenging work in medical image analysis area. Liver segmentation is an important process for computer-assisted diagnosis, pre-evaluation of liver transplantation and therapy planning of liver tumors. There are several advantages of magnetic resonance imaging such as free form ionizing radiation and good contrast visualization of soft tissue. Also, innovations in recent technology and image acquisition techniques have made magnetic resonance imaging a major tool in modern medicine. However, the use of magnetic resonance images for liver segmentation has been slow when we compare applications with the central nervous systems and musculoskeletal. The reasons are irregular shape, size and position of the liver, contrast agent effects and similarities of the gray values of neighbor organs. Therefore, in this study, we present a fully automatic liver segmentation method by using an approximation of the level set based contour evolution from T2 weighted magnetic resonance data sets. The method avoids solving partial differential equations and applies only integer operations with a two-cycle segmentation algorithm. The efficiency of the proposed approach is achieved by applying the algorithm to all slices with a constant number of iteration and performing the contour evolution without any user defined initial contour. The obtained results are evaluated with four different similarity measures and they show that the automatic segmentation approach gives successful results

    An Empirical Study Comparing Unobtrusive Physiological Sensors for Stress Detection in Computer Work.

    Get PDF
    Several unobtrusive sensors have been tested in studies to capture physiological reactions to stress in workplace settings. Lab studies tend to focus on assessing sensors during a specific computer task, while in situ studies tend to offer a generalized view of sensors' efficacy for workplace stress monitoring, without discriminating different tasks. Given the variation in workplace computer activities, this study investigates the efficacy of unobtrusive sensors for stress measurement across a variety of tasks. We present a comparison of five physiological measurements obtained in a lab experiment, where participants completed six different computer tasks, while we measured their stress levels using a chest-band (ECG, respiration), a wristband (PPG and EDA), and an emerging thermal imaging method (perinasal perspiration). We found that thermal imaging can detect increased stress for most participants across all tasks, while wrist and chest sensors were less generalizable across tasks and participants. We summarize the costs and benefits of each sensor stream, and show how some computer use scenarios present usability and reliability challenges for stress monitoring with certain physiological sensors. We provide recommendations for researchers and system builders for measuring stress with physiological sensors during workplace computer use

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    Discovery and Atmospheric Characterization of Giant Planet Kepler-12b: An Inflated Radius Outlier

    Get PDF
    We report the discovery of planet Kepler-12b (KOI-20), which at 1.695 ± 0.030 R_J is among the handful of planets with super-inflated radii above 1.65 R_J. Orbiting its slightly evolved G0 host with a 4.438 day period, this 0.431 ± 0.041 M_J planet is the least irradiated within this largest-planet-radius group, which has important implications for planetary physics. The planet's inflated radius and low mass lead to a very low density of 0.111 ± 0.010 g cm^(–3). We detect the occultation of the planet at a significance of 3.7σ in the Kepler bandpass. This yields a geometric albedo of 0.14 ± 0.04; the planetary flux is due to a combination of scattered light and emitted thermal flux. We use multiple observations with Warm Spitzer to detect the occultation at 7σ and 4σ in the 3.6 and 4.5 μm bandpasses, respectively. The occultation photometry timing is consistent with a circular orbit at e < 0.01 (1σ) and e < 0.09 (3σ). The occultation detections across the three bands favor an atmospheric model with no dayside temperature inversion. The Kepler occultation detection provides significant leverage, but conclusions regarding temperature structure are preliminary, given our ignorance of opacity sources at optical wavelengths in hot Jupiter atmospheres. If Kepler-12b and HD 209458b, which intercept similar incident stellar fluxes, have the same heavy-element masses, the interior energy source needed to explain the large radius of Kepler-12b is three times larger than that of HD 209458b. This may suggest that more than one radius-inflation mechanism is at work for Kepler-12b or that it is less heavy-element rich than other transiting planets
    corecore