798 research outputs found

    SWIM: A computational tool to unveiling crucial nodes in complex biological networks

    Get PDF
    SWItchMiner (SWIM) is a wizard-like software implementation of a procedure, previously described, able to extract information contained in complex networks. Specifically, SWIM allows unearthing the existence of a new class of hubs, called "fight-club hubs", characterized by a marked negative correlation with their first nearest neighbors. Among them, a special subset of genes, called "switch genes", appears to be characterized by an unusual pattern of intra- and inter-module connections that confers them a crucial topological role, interestingly mirrored by the evidence of their clinic-biological relevance. Here, we applied SWIM to a large panel of cancer datasets from The Cancer Genome Atlas, in order to highlight switch genes that could be critically associated with the drastic changes in the physiological state of cells or tissues induced by the cancer development. We discovered that switch genes are found in all cancers we studied and they encompass protein coding genes and non-coding RNAs, recovering many known key cancer players but also many new potential biomarkers not yet characterized in cancer context. Furthermore, SWIM is amenable to detect switch genes in different organisms and cell conditions, with the potential to uncover important players in biologically relevant scenarios, including but not limited to human cancer

    Inference and Analysis of Multilayered Mirna-Mediated Networks in Cancer

    Get PDF
    MicroRNAs (miRNAs) are small noncoding transcripts that can regulate gene expression, thereby controlling diverse biological processes. Aberrant disruptions of miRNA expression and their interactions with other biological agents (e.g., coding and noncoding transcripts) have been associated with several types of cancer. The goal of this dissertation is to use multidimensional genomic data to model two different gene regulation mechanisms by miRNAs in cancer. This dissertation results from two research projects. The first project investigates a miRNA-mediated gene regulation mechanism called competing endogenous RNA (ceRNA) interactions, which suggests that some transcripts can indirectly regulate one another\u27s activity through their interactions with a common set of miRNAs. Identification of context-specific ceRNA interactions is a challenging task. To address that, we proposed a computational method called Cancerin to identify genome-wide cancer-associated ceRNA interactions. Cancerin incorporates DNA methylation (DM), copy number alteration (CNA), and gene and miRNA expression datasets to construct cancer-specific ceRNA networks. Cancerin was applied to three cancer datasets from the Cancer Genome Atlas (TCGA) project. We found that the RNAs involved in ceRNA interactions were enriched with cancer-related genes and have high prognostic power. Moreover, the ceRNA modules in the inferred ceRNA networks were involved in cancer-associated biological processes. The second project investigates what biological functions are regulated by both miRNAs and transcription factors (TFs). While it has been known that miRNAs and TFs can coregulate common target genes having similar biological functions, it is challenging to associate specific biological functions to specific miRNAs and TFs. In this project, we proposed a computational method called CanMod to identify gene regulatory modules. Each module consists of miRNAs, TFs and their coregulated target genes. CanMod was applied on the breast cancer dataset from TCGA. Many hub regulators (i.e., miRNAs and TFs) found in the inferred modules were known cancer genes, and CanMod was able to find experimentally validated regulator-target interactions. In addition, the modules were associated with distinguishable and cancer-related biological processes. Given the biological findings obtained from Cancerin and CanMod, we believe that the two computational methods are valuable tools to explore novel miRNA involvement in cancer

    An intelligent management of integrated biomedical data for digital health via Network Medicine and its application to different human diseases

    Get PDF
    Personalized medicine aims to tailor the health care to each person’s unique signature leading to better distinguish an individual patient from the others with similar clinical manifestation. Many different biomedical data types contribute to define this patient’s unique signature, such as omics data produced trough next generation sequencing technologies. The integration of single-omics data, in a sequential or simultaneous manner, could help to understand the interplay of the different molecules thus helping to bridge the gap between genotype and phenotype. To this end, Network Medicine offers a promising formalism for multi-omics data integration by providing a holistic approach that look at the whole system at once rather than focusing on the single entities. This thesis regards the integration of various omics data following two different procedures within the framework of Network Medicine: A procedural multi-omics data integration, where a single omics was first selected to perform the main analysis, and then the other omics were used in cascade to molecularly characterize the results obtained in the main analysis. A parallel multi-omics data integration, where the result was given by the intersection of the results of each single-omics. The procedural multi-omics data integration was leveraged to study Colorectal and Breast Cancer. In the Colorectal Cancer case study, we defined the molecular signatures of a new subgroup of Colorectal Cancer possibly eligible for immune-checkpoint inhibitors therapy. Moreover, in the Breast Cancer case study we defined 11 prognostic biomarkers specific for the Basal-like subtype of Breast Cancer. Instead, the parallel multi-omics data integration was exploited to study COVID-19 and Chronic Obstructive Pulmonary Disease. In the COVID-19 case study, we defined a pool of drugs potentially repurposable for COVID-19. Whereas, in the Chronic Obstructive Pulmonary Disease case study, we discovered a group of differentially expressed and methylated genes that have a considerable biological specificity and could be related to the inflammatory pathological mechanism of Chronic Obstructive Pulmonary Disease

    The role of network science in glioblastoma

    Get PDF
    Network science has long been recognized as a well-established discipline across many biological domains. In the particular case of cancer genomics, network discovery is challenged by the multitude of available high-dimensional heterogeneous views of data. Glioblastoma (GBM) is an example of such a complex and heterogeneous disease that can be tackled by network science. Identifying the architecture of molecular GBM networks is essential to understanding the information flow and better informing drug development and pre-clinical studies. Here, we review network-based strategies that have been used in the study of GBM, along with the available software implementations for reproducibility and further testing on newly coming datasets. Promising results have been obtained from both bulk and single-cell GBM data, placing network discovery at the forefront of developing a molecularly-informed-based personalized medicine.This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with references CEECINST/00102/2018, CEECIND/00072/2018 and PD/BDE/143154/2019, UIDB/04516/2020, UIDB/00297/2020, UIDB/50021/2020, UIDB/50022/2020, UIDB/50026/2020, UIDP/50026/2020, NORTE-01-0145-FEDER-000013, and NORTE-01-0145-FEDER000023 and projects PTDC/CCI-BIO/4180/2020 and DSAIPA/DS/0026/2019. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 951970 (OLISSIPO project)

    Novel Regulators of Human Gene Expression

    Get PDF
    The human genome is rife with regulatory elements that control whether genes are expressed or silenced. While regulatory elements such as epigenomic modifications, transcription factors, promoters, and enhancers are well established, there still remain regulatory elements that are poorly characterized or even undiscovered. In recent years, noncoding RNAs derived from small nucleolar RNAs were identified and linked to gene regulation in a variety of human cancers. Adding to the growing understanding of these sdRNAs, we performed a computational analysis of castration-resistant prostate cancer patient data and identified 38 sdRNAs as significantly overexpressed in CRPC. Two of these, sdRNA-D19B and sdRNA-A24, were found to regulate the expression of tumor suppressor genes CD44 and CDK12 respectively, thus functioning as oncogenic ncRNAs in CRPC. At the level of chromatin conformation, we developed a custom Hi-C analysis pipeline to characterize the interactome of long guanine quadruplex regions. The pipeline successfully identified LG4 contacts with local genes and regulatory elements, indicating that LG4s form topologically associated domains and likely function as a novel mechanism of gene regulation and genomic organization. Taken together, the work presented adds 38 sdRNAs and an entirely new level of gene regulation via LG4 TADs to the growing catalogue of regulators of human gene expression

    RNA-RNA competitive interactions: a molecular civil war ruling cell physiology and diseases

    Get PDF
    The idea that proteins are the main determining factors in the functioning of cells and organisms, and their dysfunctions are the first cause of pathologies, has been predominant in biology and biomedicine until recently. This protein-centered view was too simplistic and failed to explain the physiological and pathological complexity of the cell. About 80% of the human genome is dynamically and pervasively transcribed, mostly as non-protein-coding RNAs (ncRNAs), which competitively interact with each other and with coding RNAs generating a complex RNA network regulating RNA processing, stability, and translation and, accordingly, fine-tuning the gene expression of the cells. Qualitative and quantitative dysregulations of RNA-RNA interaction networks are strongly involved in the onset and progression of many pathologies, including cancers and degenerative diseases. This review will summarize the RNA species involved in the competitive endogenous RNA network, their mechanisms of action, and involvement in pathological phenotypes. Moreover, it will give an overview of the most advanced experimental and computational methods to dissect and rebuild RNA networks

    Multi-omic biomarker discovery and network analyses to elucidate the molecular mechanisms of lung cancer premalignancy

    Get PDF
    Lung cancer (LC) is the leading cause of cancer death in the US, claiming over 160,000 lives annually. Although CT screening has been shown to be efficacious in reducing mortality, the limited access to screening programs among high-risk individuals and the high number of false positives contribute to low survival rates and increased healthcare costs. As a result, there is an urgent need for preventative therapeutics and novel interception biomarkers that would enhance current methods for detection of early-stage LC. This thesis addresses this challenge by examining the hypothesis that transcriptomic changes preceding the onset of LC can be identified by studying bronchial premalignant lesions (PMLs) and the normal-appearing airway epithelial cells altered in their presence (i.e., the PML-associated airway field of injury). PMLs are the presumed precursors of lung squamous cell carcinoma (SCC) whose presence indicates an increased risk of developing SCC and other subtypes of LC. Here, I leverage high-throughput mRNA and miRNA sequencing data from bronchial brushings and lesion biopsies to develop biomarkers of PML presence and progression, and to understand regulatory mechanisms driving early carcinogenesis. First, I utilized mRNA sequencing data from normal-appearing airway brushings to build a biomarker predictive of PML presence. After verifying the power of the 200-gene biomarker to detect the presence of PMLs, I evaluated its capacity to predict PML progression and detect presence of LC (Aim 1). Next, I identified likely regulatory mechanisms associated with PML severity and progression, by evaluating miRNA expression and gene coexpression modules containing their targets in bronchial lesion biopsies (Aim2). Lastly, I investigated the preservation of the PML-associated miRNAs and gene modules in the airway field of injury, highlighting an emergent link between the airway field and the PMLs (Aim 3). Overall, this thesis suggests a multi-faceted utility of PML-associated genomic signatures as markers for stratification of high-risk smokers in chemoprevention trials, markers for early detection of lung cancer, and novel chemopreventive targets, and yields valuable insights into early lung carcinogenesis by characterizing mRNA and miRNA expression alterations that contribute to premalignant disease progression towards LC.2020-01-2
    • …
    corecore