9 research outputs found

    Computational Histological Staining and Destaining of Prostate Core Biopsy RGB Images with Generative Adversarial Neural Networks

    Full text link
    Histopathology tissue samples are widely available in two states: paraffin-embedded unstained and non-paraffin-embedded stained whole slide RGB images (WSRI). Hematoxylin and eosin stain (H&E) is one of the principal stains in histology but suffers from several shortcomings related to tissue preparation, staining protocols, slowness and human error. We report two novel approaches for training machine learning models for the computational H&E staining and destaining of prostate core biopsy RGB images. The staining model uses a conditional generative adversarial network that learns hierarchical non-linear mappings between whole slide RGB image (WSRI) pairs of prostate core biopsy before and after H&E staining. The trained staining model can then generate computationally H&E-stained prostate core WSRIs using previously unseen non-stained biopsy images as input. The destaining model, by learning mappings between an H&E stained WSRI and a non-stained WSRI of the same biopsy, can computationally destain previously unseen H&E-stained images. Structural and anatomical details of prostate tissue and colors, shapes, geometries, locations of nuclei, stroma, vessels, glands and other cellular components were generated by both models with structural similarity indices of 0.68 (staining) and 0.84 (destaining). The proposed staining and destaining models can engender computational H&E staining and destaining of WSRI biopsies without additional equipment and devices.Comment: Accepted for publication at 2018 IEEE International Conference on Machine Learning and Applications (ICMLA

    The effect of neural network architecture on virtual H&E staining : Systematic assessment of histological feasibility

    Get PDF
    Conventional histopathology has relied on chemical staining for over a century. The staining process makes tissue sections visible to the human eye through a tedious and labor-intensive procedure that alters the tissue irreversibly, preventing repeated use of the sample. Deep learning-based virtual staining can potentially alleviate these shortcomings. Here, we used standard brightfield microscopy on unstained tissue sections and studied the impact of increased network capacity on the resulting virtually stained H&E images. Using the generative adversarial neural network model pix2pix as a baseline, we observed that replacing simple convolutions with dense convolution units increased the structural similarity score, peak signal-to-noise ratio, and nuclei reproduction accuracy. We also demonstrated highly accurate reproduction of histology, especially with increased network capacity, and demonstrated applicability to several tissues. We show that network architecture optimization can improve the image translation accuracy of virtual H&E staining, highlighting the potential of virtual staining in streamlining histopathological analysis.publishedVersionPeer reviewe

    PathologyGAN: Learning deep representations of cancer tissue

    Get PDF
    We apply Generative Adversarial Networks (GANs) to the domain of digital pathology. Current machine learning research for digital pathology focuses on diagnosis, but we suggest a different approach and advocate that generative models could drive forward the understanding of morphological characteristics of cancer tissue. In this paper, we develop a framework which allows GANs to capture key tissue features and uses these characteristics to give structure to its latent space. To this end, we trained our model on 249K H&E breast cancer tissue images, extracted from 576 TMA images of patients from the Netherlands Cancer Institute (NKI) and Vancouver General Hospital (VGH) cohorts. We show that our model generates high quality images, with a Frechet Inception Distance (FID) of 16.65. We further assess the quality of the images with cancer tissue characteristics (e.g. count of cancer, lymphocytes, or stromal cells), using quantitative information to calculate the FID and showing consistent performance of 9.86. Additionally, the latent space of our model shows an interpretable structure and allows semantic vector operations that translate into tissue feature transformations. Furthermore, ratings from two expert pathologists found no significant difference between our generated tissue images from real ones. The code, generated images, and pretrained model are available at https://github.com/AdalbertoCq/Pathology-GANComment: MIDL 2020 final versio

    Computational Models for Automated Histopathological Assessment of Colorectal Liver Metastasis Progression

    Get PDF
    PhDHistopathology imaging is a type of microscopy imaging commonly used for the microlevel clinical examination of a patient’s pathology. Due to the extremely large size of histopathology images, especially whole slide images (WSIs), it is difficult for pathologists to make a quantitative assessment by inspecting the details of a WSI. Hence, a computeraided system is necessary to provide a subjective and consistent assessment of the WSI for personalised treatment decisions. In this thesis, a deep learning framework for the automatic analysis of whole slide histopathology images is presented for the first time, which aims to address the challenging task of assessing and grading colorectal liver metastasis (CRLM). Quantitative evaluations of a patient’s condition with CRLM are conducted through quantifying different tissue components in resected tumorous specimens. This study mimics the visual examination process of human experts, by focusing on three levels of information, the tissue level, cell level and pixel level, to achieve the step by step segmentation of histopathology images. At the tissue level, patches with category information are utilised to analyse the WSIs. Both classification-based approaches and segmentation-based approaches are investigated to locate the metastasis region and quantify different components of the WSI. For the classification-based method, different factors that might affect the classification accuracy are explored using state-of-the-art deep convolutional neural networks (DCNNs). Furthermore, a novel network is proposed to merge the information from different magnification levels to include contextual information to support the final decision. With the support by the segmentation-based method, edge information from the image is integrated with the proposed fully convolutional neural network to further enhance the segmentation results. At the cell level, nuclei related information is examined to tackle the challenge of inadequate annotations. The problem is approached from two aspects: a weakly supervised nuclei detection and classification method is presented to model the nuclei in the CRLM by integrating a traditional image processing method and variational auto-encoder (VAE). A novel nuclei instance segmentation framework is proposed to boost the accuracy of the nuclei detection and segmentation using the idea of transfer learning. Afterwards, a fusion framework is proposed to enhance the tissue level segmentation results by leveraging the statistical and spatial properties of the cells. At the pixel level, the segmentation problem is tackled by introducing the information from the immunohistochemistry (IHC) stained images. Firstly, two data augmentation approaches, synthesis-based and transfer-based, are proposed to address the problem of insufficient pixel level segmentation. Afterwards, with the paired image and masks having been obtained, an end-to-end model is trained to achieve pixel level segmentation. Secondly, another novel weakly supervised approach based on the generative adversarial network (GAN) is proposed to explore the feasibility of transforming unpaired haematoxylin and eosin (HE) images to IHC stained images. Extensive experiments reveal that the virtually stained images can also be used for pixel level segmentation

    PathologyGAN: Learning deep representations of cancer tissue

    Get PDF
    Histopathological images of tumours contain abundant information about how tumours grow and how they interact with their micro-environment. Better understanding of tissue phenotypes in these images could reveal novel determinants of pathological processes underlying cancer, and in turn improve diagnosis and treatment options. Advances of Deep learning makes it ideal to achieve those goals, however, its application is limited by the cost of high quality labels from patients data. Unsupervised learning, in particular, deep generative models with representation learning properties provides an alternative path to further understand cancer tissue phenotypes, capturing tissue morphologies. In this paper, we develop a framework which allows Generative Adversarial Networks (GANs) to capture key tissue features and uses these characteristics to give structure to its latent space. To this end, we trained our model on two different datasets, an H and E colorectal cancer tissue from the National Center for Tumor diseases (NCT, Germany) and an H and E breast cancer tissue from the Netherlands Cancer Institute (NKI, Netherlands) and Vancouver General Hospital (VGH, Canada). Composed of 86 slide images and 576 tissue micro-arrays (TMAs) respectively. We show that our model generates high quality images, with a Frechet Inception Distance (FID) of 16.65 (breast cancer) and 32.05 (colorectal cancer). We further assess the quality of the images with cancer tissue characteristics (e.g. count of cancer, lymphocytes, or stromal cells), using quantitative information to calculate the FID and showing consistent performance of 9.86. Additionally, the latent space of our model shows an interpretable structure and allows semantic vector operations that translate into tissue feature transformations. Furthermore, ratings from two expert pathologists found no significant difference between our generated tissue images from real ones. The code, generated images, and pretrained model are available at https://github.com/AdalbertoCq/Pathology-GA

    Modeling and Analysis of Subcellular Protein Localization in Hyper-Dimensional Fluorescent Microscopy Images Using Deep Learning Methods

    Full text link
    Hyper-dimensional images are informative and become increasingly common in biomedical research. However, the machine learning methods of studying and processing the hyper-dimensional images are underdeveloped. Most of the methods only model the mapping functions between input and output by focusing on the spatial relationship, whereas neglect the temporal and causal relationships. In many cases, the spatial, temporal, and causal relationships are correlated and become a relationship complex. Therefore, only modeling the spatial relationship may result in inaccurate mapping function modeling and lead to undesired output. Despite the importance, there are multiple challenges on modeling the relationship complex, including the model complexity and the data availability. The objective of this dissertation is to comprehensively study the mapping function modeling of the spatial-temporal and the spatial-temporal-causal relationship in hyper-dimensional data with deep learning approaches. The modeling methods are expected to accurately capture the complex relationships in class-level and object-level so that new image processing tools can be developed based on the methods to study the relationships between targets in hyper-dimensional data. In this dissertation, four different cases of relationship complex are studied, including the class-level spatial-temporal-causal relationship and spatial-temporal relationship modeling, and the object-level spatial-temporal-causal relationship and spatial-temporal relationship modeling. The modelings are achieved by deep learning networks that implicitly model the mapping functions with network weight matrix. For spatial-temporal relationship, because the cause factor information is unavailable, discriminative modeling that only relies on available information is studied. For class-level and object-level spatial-temporal-causal relationship, generative modeling is studied with a new deep learning network and three new tools proposed. For spatial-temporal relationship modeling, a state-of-the-art segmentation network has been found to be the best performer over 18 networks. Based on accurate segmentation, we study the object-level temporal dynamics and interactions through dynamics tracking. The multi-object portion tracking (MOPT) method allows object tracking in subcellular level and identifies object events, including object born, dead, split, and fusion. The tracking results is 2.96% higher on consistent tracking accuracy and 35.48% higher on event identification accuracy, compared with the existing state-of-the-art tracking methods. For spatial-temporal-causal relationship modeling, the proposed four-dimensional reslicing generative adversarial network (4DR-GAN) captures the complex relationships between the input and the target proteins. The experimental results on four groups of proteins demonstrate the efficacy of 4DR-GAN compared with the widely used Pix2Pix network. On protein localization prediction (PLP), the predicted localization from 4DR-GAN is more accurate in subcellular localization, temporal consistency, and dynamics. Based on efficient PLP, the digital activation (DA) and digital inactivation (DI) tools allow precise spatial and temporal control on global and local localization manipulation. They allow researchers to study the protein functions and causal relationships by observing the digital manipulation and PLP output response

    Machine Learning Approaches to Predict Recurrence of Aggressive Tumors

    Get PDF
    Cancer recurrence is the major cause of cancer mortality. Despite tremendous research efforts, there is a dearth of biomarkers that reliably predict risk of cancer recurrence. Currently available biomarkers and tools in the clinic have limited usefulness to accurately identify patients with a higher risk of recurrence. Consequently, cancer patients suffer either from under- or over- treatment. Recent advances in machine learning and image analysis have facilitated development of techniques that translate digital images of tumors into rich source of new data. Leveraging these computational advances, my work addresses the unmet need to find risk-predictive biomarkers for Triple Negative Breast Cancer (TNBC), Ductal Carcinoma in-situ (DCIS), and Pancreatic Neuroendocrine Tumors (PanNETs). I have developed unique, clinically facile, models that determine the risk of recurrence, either local, invasive, or metastatic in these tumors. All models employ hematoxylin and eosin (H&E) stained digitized images of patient tumor samples as the primary source of data. The TNBC (n=322) models identified unique signatures from a panel of 133 protein biomarkers, relevant to breast cancer, to predict site of metastasis (brain, lung, liver, or bone) for TNBC patients. Even our least significant model (bone metastasis) offered superior prognostic value than clinopathological variables (Hazard Ratio [HR] of 5.123 vs. 1.397 p\u3c0.05). A second model predicted 10-year recurrence risk, in women with DCIS treated with breast conserving surgery, by identifying prognostically relevant features of tumor architecture from digitized H&E slides (n=344), using a novel two-step classification approach. In the validation cohort, our DCIS model provided a significantly higher HR (6.39) versus any clinopathological marker (p\u3c0.05). The third model is a deep-learning based, multi-label (annotation followed by metastasis association), whole slide image analysis pipeline (n=90) that identified a PanNET high risk group with over an 8x higher risk of metastasis (versus the low risk group p\u3c0.05), regardless of cofounding clinical variables. These machine-learning based models may guide treatment decisions and demonstrate proof-of-principle that computational pathology has tremendous clinical utility
    corecore