16 research outputs found

    Dagstuhl Annual Report January - December 2011

    Get PDF
    The International Conference and Research Center for Computer Science is a non-profit organization. Its objective is to promote world-class research in computer science and to host research seminars which enable new ideas to be showcased, problems to be discussed and the course to be set for future development in this field. The work being done to run this informatics center is documented in this report for the business year 2011

    Irrational guards are sometimes needed

    Get PDF
    In this paper we study the art gallery problem, which is one of the fundamental problems in computational geometry. The objective is to place a minimum number of guards inside a simple polygon such that the guards together can see the whole polygon. We say that a guard at position xx sees a point yy if the line segment xyxy is fully contained in the polygon. Despite an extensive study of the art gallery problem, it remained an open question whether there are polygons given by integer coordinates that require guard positions with irrational coordinates in any optimal solution. We give a positive answer to this question by constructing a monotone polygon with integer coordinates that can be guarded by three guards only when we allow to place the guards at points with irrational coordinates. Otherwise, four guards are needed. By extending this example, we show that for every nn, there is polygon which can be guarded by 3n3n guards with irrational coordinates but need 4n4n guards if the coordinates have to be rational. Subsequently, we show that there are rectilinear polygons given by integer coordinates that require guards with irrational coordinates in any optimal solution.Comment: 18 pages 10 Figure

    Studies on dimension reduction and feature spaces :

    Get PDF
    Today's world produces and stores huge amounts of data, which calls for methods that can tackle both growing sizes and growing dimensionalities of data sets. Dimension reduction aims at answering the challenges posed by the latter. Many dimension reduction methods consist of a metric transformation part followed by optimization of a cost function. Several classes of cost functions have been developed and studied, while metrics have received less attention. We promote the view that metrics should be lifted to a more independent role in dimension reduction research. The subject of this work is the interaction of metrics with dimension reduction. The work is built on a series of studies on current topics in dimension reduction and neural network research. Neural networks are used both as a tool and as a target for dimension reduction. When the results of modeling or clustering are represented as a metric, they can be studied using dimension reduction, or they can be used to introduce new properties into a dimension reduction method. We give two examples of such use: visualizing results of hierarchical clustering, and creating supervised variants of existing dimension reduction methods by using a metric that is built on the feature space of a neural network. Combining clustering with dimension reduction results in a novel way for creating space-efficient visualizations, that tell both about hierarchical structure and about distances of clusters. We study feature spaces used in a recently developed neural network architecture called extreme learning machine. We give a novel interpretation for such neural networks, and recognize the need to parameterize extreme learning machines with the variance of network weights. This has practical implications for use of extreme learning machines, since the current practice emphasizes the role of hidden units and ignores the variance. A current trend in the research of deep neural networks is to use cost functions from dimension reduction methods to train the network for supervised dimension reduction. We show that equally good results can be obtained by training a bottlenecked neural network for classification or regression, which is faster than using a dimension reduction cost. We demonstrate that, contrary to the current belief, using sparse distance matrices for creating fast dimension reduction methods is feasible, if a proper balance between short-distance and long-distance entries in the sparse matrix is maintained. This observation opens up a promising research direction, with possibility to use modern dimension reduction methods on much larger data sets than which are manageable today

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    CAD interface and framework for curve optimisation applications

    Get PDF
    Computer Aided Design is currently expanding its boundaries to include more design features in its processes. Design is identified as an iterative process converging to solutions satisfying a set of constraints. Its close relation with optimisation indicate that there is strong potential for the integration of optimisation and CAD. The problem addressed in this thesis lies in interfacing the geometric representation of design with other non-geometric aspects. The example of free-form curve modelling is taken to investigate such relationships. Assumptions are made that Optimisation is powered by Evolutionary Computing algorithms like Genetic Algorithms (GA). The geometric definition of curves is commonly supported by NURBS, whose construction constraints are defined locally at the data points. Here the NURBS formulation is used with GA in an attempt to provide complementary handles on the curves shape other than the usual data point coordinates and control points weights. Differential properties are used for optimising NURBS, Hermite interpolation allows for the definition of higher order constraints (tangent, normal, bi-normal) at data points. The assignment of parameter values at the data points, known as parameterisation also provides control of the curve’s shape. Curve optimisation is also performed at the geometric modelling level. Old mathematical theorems established by Frénet and further developed by other mathematicians provide means of defining a curve’s shape with it’s intrinsic equations. Such representation is possible by using Function Representation (F-rep) algebra available in the ACIS software. Frep allows more generic and exact means of interfacing with the curve’s geometry and new functionality for curve inspection and optimisation are proposed in this thesis. The integration of optimisation findings and CAD are documented in the definition of a framework. The framework architecture proposed reconstructs a new CAD environment from separate elements bolted together in a generic Application Programming Interface (API) named “Oli interface”. Functionality created to interface optimisation and CAD makes a requirement list of the work that both sides should undertake to achieve design optimisation in the CAD environment.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    On the k-Abelian Equivalence Relation of Finite Words

    Get PDF
    This thesis is devoted to the so-called k-abelian equivalence relation of sequences of symbols, that is, words. This equivalence relation is a generalization of the abelian equivalence of words. Two words are abelian equivalent if one is a permutation of the other. For any positive integer k, two words are called k-abelian equivalent if each word of length at most k occurs equally many times as a factor in the two words. The k-abelian equivalence defines an equivalence relation, even a congruence, of finite words. A hierarchy of equivalence classes in between the equality relation and the abelian equivalence of words is thus obtained. Most of the literature on the k-abelian equivalence deals with infinite words. In this thesis we consider several aspects of the equivalence relations, the main objective being to build a fairly comprehensive picture on the structure of the k-abelian equivalence classes themselves. The main part of the thesis deals with the structural aspects of k-abelian equivalence classes. We also consider aspects of k-abelian equivalence in infinite words. We survey known characterizations of the k-abelian equivalence of finite words from the literature and also introduce novel characterizations. For the analysis of structural properties of the equivalence relation, the main tool is the characterization by the rewriting rule called the k-switching. Using this rule it is straightforward to show that the language comprised of the lexicographically least elements of the k-abelian equivalence classes is regular. Further word-combinatorial analysis of the lexicographically least elements leads us to describe the deterministic finite automata recognizing this language. Using tools from formal language theory combined with our analysis, we give an optimal expression for the asymptotic growth rate of the number of k-abelian equivalence classes of length n over an m-letter alphabet. Explicit formulae are computed for small values of k and m, and these sequences appear in Sloane’s Online Encyclopedia of Integer Sequences. Due to the fact that the k-abelian equivalence relation is a congruence of the free monoid, we study equations over the k-abelian equivalence classes. The main result in this setting is that any system of equations of k-abelian equivalence classes is equivalent to one of its finite subsystems, i.e., the monoid defined by the k-abelian equivalence relation possesses the compactness property. Concerning infinite words, we mainly consider the (k-)abelian complexity function. We complete a classification of the asymptotic abelian complexities of pure morphic binary words. In other words, given a morphism which has an infinite binary fixed point, the limit superior asymptotic abelian complexity of the fixed point can be computed (in principle). We also give a new proof of the fact that the k-abelian complexity of a Sturmian word is n + 1 for length n 2k. In fact, we consider several aspects of the k-abelian equivalence relation in Sturmian words using a dynamical interpretation of these words. We reprove the fact that any Sturmian word contains arbitrarily large k-abelian repetitions. The methods used allow to analyze the situation in more detail, and this leads us to define the so-called k-abelian critical exponent which measures the ratio of the exponent and the length of the root of a k-abelian repetition. This notion is connected to a deep number theoretic object called the Lagrange spectrum

    Structural and computational aspects of simple and influence games

    Get PDF
    Simple games are a fundamental class of cooperative games. They have a huge relevance in several areas of computer science, social sciences and discrete applied mathematics. The algorithmic and computational complexity aspects of simple games have been gaining notoriety in the recent years. In this thesis we review different computational problems related to properties, parameters, and solution concepts of simple games. We consider different forms of representation of simple games, regular games and weighted games, and we analyze the computational complexity required to transform a game from one representation to another. We also analyze the complexity of several open problems under different forms of representation. In this scenario, we prove that the problem of deciding whether a simple game in minimal winning form is decisive (a problem that is associated to the duality problem of hypergraphs and monotone Boolean functions) can be solved in quasi-polynomial time, and that this problem can be polynomially reduced to the same problem but restricted to regular games in shift-minimal winning form. We also prove that the problem of deciding wheter a regular game is strong in shift-minimal winning form is coNP-complete. Further, for the width, one of the parameters of simple games, we prove that for simple games in minimal winning form it can be computed in polynomial time. Regardless of the form of representation, we also analyze counting and enumeration problems for several subfamilies of these games. We also introduce influence games, which are a new approach to study simple games based on a model of spread of influence in a social network, where influence spreads according to the linear threshold model. We show that influence games capture the whole class of simple games. Moreover, we study for influence games the complexity of the problems related to parameters, properties and solution concepts considered for simple games. We consider extremal cases with respect to demand of influence, and we show that, for these subfamilies, several problems become polynomial. We finish with some applications inspired on influence games. The first set of results concerns to the definition of collective choice models. For mediation systems, several of the problems of properties mentioned above are polynomial-time solvable. For influence systems, we prove that computing the satisfaction (a measure equivalent to the Rae index and similar to the Banzhaf value) is hard unless we consider some restrictions in the model. For OLFM systems, a generalization of OLF systems (van den Brink et al. 2011, 2012) we provide an axiomatization of satisfaction. The second set of results concerns to social network analysis. We define new centrality measures of social networks that we compare on real networks with some classical centrality measures.Los juegos simples son una clase fundamental de juegos cooperativos, que tiene una enorme relevancia en diversas áreas de ciencias de la computación, ciencias sociales y matemáticas discretas aplicadas. En los últimos años, los distintos aspectos algorítmicos y de complejidad computacional de los juegos simples ha ido ganando notoriedad. En esta tesis revisamos los distintos problemas computacionales relacionados con propiedades, parámetros y conceptos de solución de juegos simples. Primero consideramos distintas formas de representación de juegos simples, juegos regulares y juegos de mayoría ponderada, y estudiamos la complejidad computacional requerida para transformar un juego desde una representación a otra. También analizamos la complejidad de varios problemas abiertos bajo diferentes formas de representación. En este sentido, demostramos que el problema de decidir si un juego simple en forma ganadora minimal es decisivo (un problema asociado al problema de dualidad de hipergrafos y funciones booleanas monótonas) puede resolverse en tiempo cuasi-polinomial, y que este problema puede reducirse polinomialmente al mismo problema pero restringido a juegos regulares en forma ganadora shift-minimal. También demostramos que el problema de decidir si un juego regular en forma ganadora shift-minimal es fuerte (strong) es coNP-completo. Adicionalmente, para juegos simples en forma ganadora minimal demostramos que el parámetro de anchura (width) puede computarse en tiempo polinomial. Independientemente de la forma de representación, también estudiamos problemas de enumeración y conteo para varias subfamilias de juegos simples. Luego introducimos los juegos de influencia, un nuevo enfoque para estudiar juegos simples basado en un modelo de dispersión de influencia en redes sociales, donde la influencia se dispersa de acuerdo con el modelo de umbral lineal (linear threshold model). Demostramos que los juegos de influencia abarcan la totalidad de la clase de los juegos simples. Para estos juegos también estudiamos la complejidad de los problemas relacionados con parámetros, propiedades y conceptos de solución considerados para los juegos simples. Además consideramos casos extremos con respecto a la demanda de influencia, y probamos que para ciertas subfamilias, varios de estos problemas se vuelven polinomiales. Finalmente estudiamos algunas aplicaciones inspiradas en los juegos de influencia. El primer conjunto de estos resultados tiene que ver con la definición de modelos de decisión colectiva. Para sistemas de mediación, varios de los problemas de propiedades mencionados anteriormente son polinomialmente resolubles. Para los sistemas de influencia, demostramos que computar la satisfacción (una medida equivalente al índice de Rae y similar al valor de Banzhaf) es difícil a menos que consideremos algunas restricciones en el modelo. Para los sistemas OLFM, una generalización de los sistemas OLF (van den Brink et al. 2011, 2012) proporcionamos una axiomatización para la medida de satisfacción. El segundo conjunto de resultados se refiere al análisis de redes sociales, y en particular con la definición de nuevas medidas de centralidad de redes sociales, que comparamos en redes reales con otras medidas de centralidad clásica
    corecore