1,628 research outputs found

    Continuum Modeling and Simulation in Bone Tissue Engineering

    Get PDF
    Bone tissue engineering is currently a mature methodology from a research perspective. Moreover, modeling and simulation of involved processes and phenomena in BTE have been proved in a number of papers to be an excellent assessment tool in the stages of design and proof of concept through in-vivo or in-vitro experimentation. In this paper, a review of the most relevant contributions in modeling and simulation, in silico, in BTE applications is conducted. The most popular in silico simulations in BTE are classified into: (i) Mechanics modeling and sca old design, (ii) transport and flow modeling, and (iii) modeling of physical phenomena. The paper is restricted to the review of the numerical implementation and simulation of continuum theories applied to di erent processes in BTE, such that molecular dynamics or discrete approaches are out of the scope of the paper. Two main conclusions are drawn at the end of the paper: First, the great potential and advantages that in silico simulation o ers in BTE, and second, the need for interdisciplinary collaboration to further validate numerical models developed in BTE.Ministerio de Economía y Competitividad del Gobierno España DPI2017-82501-

    Mathematical modeling of collagen turnover in biological tissue

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00285-012-0613-yWe present a theoretical and computational model for collagen turnover in soft biological tissues. Driven by alterations in the mechanical environment, collagen fiber bundles may undergo important chronic changes, characterized primarily by alterations in collagen synthesis and degradation rates. In particular, hypertension triggers an increase in tropocollagen synthesis and a decrease in collagen degradation, which lead to the well-documented overall increase in collagen content. These changes are the result of a cascade of events, initiated mainly by the endothelial and smooth muscle cells. Here, we represent these events collectively in terms of two internal variables, the concentration of growth factor TGF-β\beta and tissue inhibitors of metalloproteinases TIMP. The upregulation of TGF-β\beta increases the collagen density. The upregulation of TIMP also increases the collagen density through decreasing matrix metalloproteinase MMP. We establish a mathematical theory for mechanically-induced collagen turnover and introduce a computational algorithm for its robust and efficient solution. We demonstrate that our model can accurately predict the experimentally observed collagen increase in response to hypertension reported in literature. Ultimately, the model can serve as a valuable tool to predict the chronic adaptation of collagen content to restore the homeostatic equilibrium state in vessels with arbitrary micro-structure and geometry.Peer ReviewedPostprint (author's final draft

    Computational Multiscale Solvers for Continuum Approaches

    Get PDF
    Computational multiscale analyses are currently ubiquitous in science and technology. Different problems of interest-e.g., mechanical, fluid, thermal, or electromagnetic-involving a domain with two or more clearly distinguished spatial or temporal scales, are candidates to be solved by using this technique. Moreover, the predictable capability and potential of multiscale analysis may result in an interesting tool for the development of new concept materials, with desired macroscopic or apparent properties through the design of their microstructure, which is now even more possible with the combination of nanotechnology and additive manufacturing. Indeed, the information in terms of field variables at a finer scale is available by solving its associated localization problem. In this work, a review on the algorithmic treatment of multiscale analyses of several problems with a technological interest is presented. The paper collects both classical and modern techniques of multiscale simulation such as those based on the proper generalized decomposition (PGD) approach. Moreover, an overview of available software for the implementation of such numerical schemes is also carried out. The availability and usefulness of this technique in the design of complex microstructural systems are highlighted along the text. In this review, the fine, and hence the coarse scale, are associated with continuum variables so atomistic approaches and coarse-graining transfer techniques are out of the scope of this paper.Abengoa Researc

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Motion compensated micro-CT reconstruction for in-situ analysis of dynamic processes

    Get PDF
    This work presents a framework to exploit the synergy between Digital Volume Correlation ( DVC) and iterative CT reconstruction to enhance the quality of high-resolution dynamic X-ray CT (4D-mu CT) and obtain quantitative results from the acquired dataset in the form of 3D strain maps which can be directly correlated to the material properties. Furthermore, we show that the developed framework is capable of strongly reducing motion artifacts even in a dataset containing a single 360 degrees rotation

    Modeling mechanical response of heterogeneous materials

    Get PDF
    Heterogeneous materials are ubiquitous in nature and as synthetic materials. These materials provide unique combination of desirable mechanical properties emerging from its heterogeneities at different length scales. Future structural and technological applications will require the development of advanced light weight materials with superior strength and toughness. Cost effective design of the advanced high performance synthetic materials by tailoring their microstructure is the challenge facing the materials design community. Prior knowledge of structure-property relationships for these materials is imperative for optimal design. Thus, understanding such relationships for heterogeneous materials is of primary interest. Furthermore, computational burden is becoming critical concern in several areas of heterogeneous materials design. Therefore, computationally efficient and accurate predictive tools are highly essential. In the present study, we mainly focus on mechanical behavior of soft cellular materials and tough biological material such as mussel byssus thread. Cellular materials exhibit microstructural heterogeneity by interconnected network of same material phase. However, mussel byssus thread comprises of two distinct material phases. A robust numerical framework is developed to investigate the micromechanisms behind the macroscopic response of both of these materials. Using this framework, effect of microstuctural parameters has been addressed on the stress state of cellular specimens during split Hopkinson pressure bar test. A voronoi tessellation based algorithm has been developed to simulate the cellular microstructure. Micromechanisms (microinertia, microbuckling and microbending) governing macroscopic behavior of cellular solids are investigated thoroughly with respect to various microstructural and loading parameters. To understand the origin of high toughness of mussel byssus thread, a Genetic Algorithm (GA) based optimization framework has been developed. It is found that two different material phases (collagens) of mussel byssus thread are optimally distributed along the thread. These applications demonstrate that the presence of heterogeneity in the system demands high computational resources for simulation and modeling. Thus, Higher Dimensional Model Representation (HDMR) based surrogate modeling concept has been proposed to reduce computational complexity. The applicability of such methodology has been demonstrated in failure envelope construction and in multiscale finite element techniques. It is observed that surrogate based model can capture the behavior of complex material systems with sufficient accuracy. The computational algorithms presented in this thesis will further pave the way for accurate prediction of macroscopic deformation behavior of various class of advanced materials from their measurable microstructural features at a reasonable computational cost
    • …
    corecore