1,985 research outputs found

    Computational Fluid Dynamics Analysis of the Effect of Plaques in the Left Coronary Artery

    Get PDF
    This study was to investigate the hemodynamic effect of simulated plaques in left coronary artery models, which were generated from a sample patient’s data. Plaques were simulated and placed at the left main stem and the left anterior descending (LAD) to produce at least 60% coronary stenosis. Computational fluid dynamics analysis was performed to simulate realistic physiological conditions that reflect the in vivo cardiac hemodynamics, and comparison of wall shear stress (WSS) between Newtonian and non-Newtonian fluid models was performed. The pressure gradient (PSG) and flow velocities in the left coronary artery were measured and compared in the left coronary models with and without presence of plaques during cardiac cycle. Our results showed that the highest PSG was observed in stenotic regions caused by the plaques. Low flow velocity areas were found at postplaque locations in the left circumflex, LAD, and bifurcation. WSS at the stenotic locations was similar between the non-Newtonian and Newtonian models although some more details were observed with non-Newtonian model. There is a direct correlation between coronary plaques and subsequent hemodynamic changes, based on the simulation of plaques in the realistic coronary models

    Investigation of the haemodynamic environment of bifurcation plaques within the left coronary artery in realistic patient models based on CT images

    Get PDF
    The aim of this study was to investigate the plaques at the left coronary artery (LCA) and their effect on the haemodynamic and wall shear stress (WSS) in realistic patient models. Three sample patients with left coronary disease were selected based on CT data. The plaques were present at the left anterior descending and left circumflex branches with more than 50 % lumen narrowing. Computational fluid dynamics analysis was used to perform simulation of patient-specific models with realistic physiological conditions that demonstrate in vivo cardiac flow. WSS and blood flow in the LCA were measured during cardiac cycles. Our results showed that WSS was found to increase at the stenotic locations and decrease at pre- and post-plaque locations, whilst the recirculation location was found at post-plaque regions. There is a strong correlation between coronary bifurcation plaques and hemodynamic and WSS changes, based on the realistic coronary disease models

    Computational fluid dynamics analysis of the effect of simulated plaques in the left coronary artery: A preliminary study

    Get PDF
    Background: Atherosclerosis is the most common cause of coronary artery disease which is formed by plaque presence inside the artery wall leading to blockage of the blood supply to the heart muscle. The mechanism of atherosclerotic development is dependent on the blood flow variations in the artery wall during cardiac cycles. Characterization of plaque components and investigation of the plaques with subsequent coronary artery stenosis and myocardial dysfunction has been extensively studied in the literature. However, little is known about the effect of plaques on hemodynamic changes to the coronary artery, to the best of our knowledge. Investigation of the position of plaques in the coronary artery and its corresponding regional hemodynamic effects will provide valuable information for prediction of the coronary artery disease progression. The aim of this study is to investigate the effect of simulated plaques in the left coronary artery using computational fluid dynamics. Methods: A left coronary artery model was generated based on a computed tomography data in a patient suspected of coronary artery disease. The model consists of the left main coronary artery, left anterior descending and left circumflex, together with side branches. Simulated coronary plaques were created and placed in the left main coronary artery and left anterior descending with a resultant lumen stenosis of more than 50%. The blood rheology and pulsatile velocity at the left coronary artery were applied to simulate the realistic physiological situation. A transient simulation was performed to demonstrate the hemodynamic changes during cardiac phases. The flow velocity pattern, wall shear stress and wall pressure were measured at peak systolic and middle diastolic phases in the models with and without presence of plaques. Results: Our results showed that the flow change due to the simulated coronary plaques demonstrated a large circulation region at the left coronary bifurcation, and the velocity through bifurcation was increased. In contrast, a smooth flow pattern was observed in the non-calcified regions and flow velocity was low at the bifurcation. Low wall pressure was present in the coronary artery with a simulated coronary plaque whereas there was high wall pressure in the normal coronary artery. The simulated plaques resulted in high wall shear stress when compared to the low wall shear stress present in the normal coronary artery. The simulated coronary plaques interfered with blood flow behavior which was demonstrated as a large region of disturbed flow at coronary bifurcation. Conclusion: We successfully simulated the coronary plaques in a realistic coronary model and the effect of plaques in different locations on subsequent hemodynamic changes. Our preliminary study is useful for further investigation of the development of atherosclerosis in patients with different cardiac risk factors

    The role of biomechanics in the assessment of carotid atherosclerosis severity: a numerical approach

    Get PDF
    Numerical fluid biomechanics has been proved to be an efficient tool for understanding vascular diseases including atherosclerosis. There are many evidences that atherosclerosis plaque formation and rupture are associated with blood flow behavior. In fact, zones of low wall shear stress are vivid areas of proliferation of atherosclerosis, and in particular, in the carotid artery. In this paper a model is presented for investigating how the presence of the plaque influences the distribution of the wall shear stress. In complement to a first approach with rigid walls, an FSI model is developed as well to simulate the coupling between the blood flow and the carotid artery deformation. The results show that the presence of the plaque causes an attenuation of the WSS in the after-plaque region as well as the emergence of recirculation areas

    An investigation of correlation between left coronary bifurcation angle and hemodynamic changes in coronary stenosis by coronary computed tomography angiography-derived computational fluid dynamics

    Get PDF
    Background: To investigate the correlation between left coronary bifurcation angle and coronary stenosis as assessed by coronary computed tomography angiography (CCTA)-generated computational fluid dynamics (CFD) analysis when compared to the CCTA analysis of coronary lumen stenosis and plaque lesion length with invasive coronary angiography (ICA) as the reference method. Methods: Thirty patients (22 males, mean age: 59±6.9 years) with calcified plaques at the left coronary artery were included in the study with all patients undergoing CCTA and ICA examinations. CFD simulation was performed to analyze hemodynamic changes to the left coronary artery models in terms of wall shear stress, wall pressure and flow velocity, with findings correlated to the coronary stenosis and degree of bifurcation angle. Calcified plaque length was measured in the left coronary artery with diagnostic value compared to that from coronary lumen and bifurcation angle assessments. Results: Of 26 significant stenosis at left anterior descending (LAD) and 13 at left circumflex (LCx) on CCTA, only 14 and 5 of them were confirmed to be >50% stenosis at LAD and LCx respectively on ICA, resulting in sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 100%, 52%, 49% and 100%. The mean plaque length was measured 5.3±3.6 and 4.4±1.9 mm at LAD and LCx, respectively, with diagnostic sensitivity, specificity, PPV and NPV being 92.8%, 46.7%, 61.9% and 87.5% for extensively calcified plaques. The mean bifurcation angle was measured 83.9±13.6º and 83.8±13.3º on CCTA and ICA, respectively, with no significant difference (P=0.98). The corresponding sensitivity, specificity, PPV and NPV were 100%, 78.6%, 84.2% and 100% based on bifurcation angle measurement on CCTA, 100%, 73.3%, 78.9% and 100% based on bifurcation angle measurements on ICA, respectively. Wall shear stress was noted to increase in the LAD and LCx models with significant stenosis and wider angulation (>80º), but demonstrated little or no change in most of the coronary models with no significant stenosis and narrower angulation (<80º). Conclusions: This study further clarifies the relationship between left coronary bifurcation angle and significant stenosis, with angulation measurement serving as a more accurate approach than coronary lumen assessment or plaque lesion length for determining significant coronary stenosis. Left coronary bifurcation angle is suggested to be incorporated into coronary artery disease (CAD) assessment when diagnosing significant CAD

    Computational fluid dynamic analysis of calcified coronary plaques: Correlation between hemodynamic changes and cardiac image analysis based on left coronary bifurcation angle and lumen assessments

    Get PDF
    The purpose of this study was to determine the relationship between left coronary bifurcation angle and significant coronary stenosis with use of coronary CT angiography (CCTA)-generated computational fluid dynamics (CFD) analysis when compared to the CCTA analysis of coronary lumen stenosis with invasive coronary angiography (ICA) as the reference method. Eleven patients with calcified plaques at the left coronary artery tree who underwent CCTA and ICA examinations were included in the study. CFD simulation of left coronary models was performed to analyse hemodynamic changes including wall shear stress, wall pressure and flow velocity. The mean bifurcation angle was measured 83.3 ± 17.1° and 83.3 ± 17.0° on CCTA and ICA, respectively, with no significant difference (p=0.99). Of 15 significant stenosis at left anterior descending (LAD) and left circumflex (LCx) on CCTA, only 3 of them were confirmed to be &gt; 50% stenosis on ICA. Wall shear stress was noted to increase in the LAD and LCx models with significant stenosis and wider angulation (&gt; 80°), but remained no change in most of the other coronary models with no significant stenosis and narrower angulation. Wall pressured was decreased at the significant stenotic lesions, while flow velocity was increased with flow turbulence at the post-stenotic sites. This study further clarifies the direct correlation between left coronary bifurcation angle and significant stenosis, with angulation measurement being more accurate than lumen assessment for diagnosing significant stenosis

    Coronary CT angiography: Beyond morphological stenosis analysis

    Get PDF
    Rapid technological developments in computed tomography (CT) imaging technique have made coronary CT angiography an attractive imaging tool in the detection of coronary artery disease. Despite visualization of excellent anatomical details of the coronary lumen changes, coronary CT angiography does not provide hemodynamic changes caused by presence of plaques. Computational fluid dynamics (CFD) is a widely used method in the mechanical engineering field to solve complex problems through analysing fluid flow, heat transfer and associated phenomena by using computer simulations. In recent years, CFD is increasingly used in biomedical research due to high performance hardware and software. CFD techniques have been used to study cardiovascular hemodynamics through simulation tools to assist in predicting the behaviour of circulatory blood flow inside the human body. Blood flow plays a key role in the localization and progression of coronary artery disease. CFD simulation based on 3D luminal reconstructions can be used to analyse the local flow fields and flow profiling due to changes of vascular geometry, thus, identifying risk factors for development of coronary artery disease. The purpose of this article is to provide an overview of the coronary CT-derived CFD applications in coronary artery disease

    Coronary atherosclerosis:biomechanics and imaging

    Get PDF

    Coronary atherosclerosis:biomechanics and imaging

    Get PDF
    corecore