8,184 research outputs found

    Making serine integrases work for us

    Get PDF
    DNA site-specific recombinases are enzymes (often associated with mobile DNA elements) that catalyse breaking and rejoining of DNA strands at specific points, thereby bringing about precise genetic rearrangements. Serine integrases are a group of recombinases derived from bacteriophages. Their unusual properties, including directionality of recombination and simple site requirements, are leading to their development as efficient, versatile tools for applications in experimental biology, biotechnology, synthetic biology and gene therapy. This article summarizes our current knowledge of serine integrase structure and mechanism, then outlines key factors that affect the performance of these phage recombination systems. Recently published studies, that have expanded the repertoire of available systems and reveal system-specific characteristics, will help us to choose the best integrases for envisaged applications

    De Novo Evolutionary Emergence of a Symmetrical Protein Is Shaped by Folding Constraints.

    Get PDF
    Molecular evolution has focused on the divergence of molecular functions, yet we know little about how structurally distinct protein folds emerge de novo. We characterized the evolutionary trajectories and selection forces underlying emergence of β-propeller proteins, a globular and symmetric fold group with diverse functions. The identification of short propeller-like motifs (<50 amino acids) in natural genomes indicated that they expanded via tandem duplications to form extant propellers. We phylogenetically reconstructed 47-residue ancestral motifs that form five-bladed lectin propellers via oligomeric assembly. We demonstrate a functional trajectory of tandem duplications of these motifs leading to monomeric lectins. Foldability, i.e., higher efficiency of folding, was the main parameter leading to improved functionality along the entire evolutionary trajectory. However, folding constraints changed along the trajectory: initially, conflicts between monomer folding and oligomer assembly dominated, whereas subsequently, upon tandem duplication, tradeoffs between monomer stability and foldability took precedence.We thank Michael Gurevitz (Tel Aviv University), John Finnerty (Boston University) and Adam Reitzel (Woodshole Oceanographic Institute) for providing N. vectensis cDNA, and Joseph Rogers (University of Cambridge) for discussion and assistance. We thank Liam Longo, Ron Milo and Balaji Santhanam for insightful comments on this manuscript. This work was supported by the Israel Science Foundation grant 980/14 (DST), the Weizmann - UK Joint Research Program (DST and JC), the Weizmann Koshland and Dean of Faculty fellowships (RGS) and an EMBO short-term fellowship (RGS). JC is a Wellcome Trust Fellow (WT 095195).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.cell.2015.12.02

    Structure of an archaeal PCNA1-PCNA2-FEN1 complex: elucidating PCNA subunit and client enzyme specificity.

    Get PDF
    The archaeal/eukaryotic proliferating cell nuclear antigen (PCNA) toroidal clamp interacts with a host of DNA modifying enzymes, providing a stable anchorage and enhancing their respective processivities. Given the broad range of enzymes with which PCNA has been shown to interact, relatively little is known about the mode of assembly of functionally meaningful combinations of enzymes on the PCNA clamp. We have determined the X-ray crystal structure of the Sulfolobus solfataricus PCNA1-PCNA2 heterodimer, bound to a single copy of the flap endonuclease FEN1 at 2.9 A resolution. We demonstrate the specificity of interaction of the PCNA subunits to form the PCNA1-PCNA2-PCNA3 heterotrimer, as well as providing a rationale for the specific interaction of the C-terminal PIP-box motif of FEN1 for the PCNA1 subunit. The structure explains the specificity of the individual archaeal PCNA subunits for selected repair enzyme 'clients', and provides insights into the co-ordinated assembly of sequential enzymatic steps in PCNA-scaffolded DNA repair cascades

    An Evolutionary Trade-Off between Protein Turnover Rate and Protein Aggregation Favors a Higher Aggregation Propensity in Fast Degrading Proteins

    Get PDF
    We previously showed the existence of selective pressure against protein aggregation by the enrichment of aggregation-opposing ‘gatekeeper’ residues at strategic places along the sequence of proteins. Here we analyzed the relationship between protein lifetime and protein aggregation by combining experimentally determined turnover rates, expression data, structural data and chaperone interaction data on a set of more than 500 proteins. We find that selective pressure on protein sequences against aggregation is not homogeneous but that short-living proteins on average have a higher aggregation propensity and fewer chaperone interactions than long-living proteins. We also find that short-living proteins are more often associated to deposition diseases. These findings suggest that the efficient degradation of high-turnover proteins is sufficient to preclude aggregation, but also that factors that inhibit proteasomal activity, such as physiological ageing, will primarily affect the aggregation of short-living proteins

    Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly

    Get PDF
    The assembly of the tropoelastin monomer into elastin is vital for conferring elasticity on blood vessels, skin, and lungs. Tropoelastin has dual needs for flexibility and structure in self-assembly. We explore the structure-dynamics-function interplay, consider the duality of molecular order and disorder, and identify equally significant functional contributions by local and global structures. To study these organizational stratifications, we perturb a key hinge region by expressing an exon that is universally spliced out in human tropoelastins. We find a herniated nanostructure with a displaced C terminus and explain by molecular modeling that flexible helices are replaced with substantial β sheets. We see atypical higher-order cross-linking and inefficient assembly into discontinuous, thick elastic fibers. We explain this dysfunction by correlating local and global structural effects with changes in the molecule’s assembly dynamics. This work has general implications for our understanding of elastomeric proteins, which balance disordered regions with defined structural modules at multiple scales for functional assembly.United States. Office of Naval Research (Presidential Early Career Award for Scientists and Engineers)National Institutes of Health (U.S.) (U01 EB014976

    Computational analysis of noncoding RNAs

    Get PDF
    Noncoding RNAs have emerged as important key players in the cell. Understanding their surprisingly diverse range of functions is challenging for experimental and computational biology. Here, we review computational methods to analyze noncoding RNAs. The topics covered include basic and advanced techniques to predict RNA structures, annotation of noncoding RNAs in genomic data, mining RNA-seq data for novel transcripts and prediction of transcript structures, computational aspects of microRNAs, and database resources.Austrian Science Fund (Schrodinger Fellowship J2966-B12)German Research Foundation (grant WI 3628/1-1 to SW)National Institutes of Health (U.S.) (NIH award 1RC1CA147187
    • …
    corecore