4,065 research outputs found

    Queuing Theoretic Analysis of Power-performance Tradeoff in Power-efficient Computing

    Full text link
    In this paper we study the power-performance relationship of power-efficient computing from a queuing theoretic perspective. We investigate the interplay of several system operations including processing speed, system on/off decisions, and server farm size. We identify that there are oftentimes "sweet spots" in power-efficient operations: there exist optimal combinations of processing speed and system settings that maximize power efficiency. For the single server case, a widely deployed threshold mechanism is studied. We show that there exist optimal processing speed and threshold value pairs that minimize the power consumption. This holds for the threshold mechanism with job batching. For the multi-server case, it is shown that there exist best processing speed and server farm size combinations.Comment: Paper published in CISS 201

    An Empirical Study of Mini-Batch Creation Strategies for Neural Machine Translation

    Full text link
    Training of neural machine translation (NMT) models usually uses mini-batches for efficiency purposes. During the mini-batched training process, it is necessary to pad shorter sentences in a mini-batch to be equal in length to the longest sentence therein for efficient computation. Previous work has noted that sorting the corpus based on the sentence length before making mini-batches reduces the amount of padding and increases the processing speed. However, despite the fact that mini-batch creation is an essential step in NMT training, widely used NMT toolkits implement disparate strategies for doing so, which have not been empirically validated or compared. This work investigates mini-batch creation strategies with experiments over two different datasets. Our results suggest that the choice of a mini-batch creation strategy has a large effect on NMT training and some length-based sorting strategies do not always work well compared with simple shuffling.Comment: 8 pages, accepted to the First Workshop on Neural Machine Translatio

    Batch solution of small PDEs with the OPS DSL

    Get PDF
    In this paper we discuss the challenges and optimisations opportunities when solving a large number of small, equally sized discretised PDEs on regular grids. We present an extension of the OPS (Oxford Parallel library for Structured meshes) embedded Domain Specific Language, and show how support can be added for solving multiple systems, and how OPS makes it easy to deploy a variety of transformations and optimisations. The new capabilities in OPS allow to automatically apply data structure transformations, as well as execution schedule transformations to deliver high performance on a variety of hardware platforms. We evaluate our work on an industrially representative finance simulation on Intel CPUs, as well as NVIDIA GPUs

    Bounding Optimality Gap in Stochastic Optimization via Bagging: Statistical Efficiency and Stability

    Full text link
    We study a statistical method to estimate the optimal value, and the optimality gap of a given solution for stochastic optimization as an assessment of the solution quality. Our approach is based on bootstrap aggregating, or bagging, resampled sample average approximation (SAA). We show how this approach leads to valid statistical confidence bounds for non-smooth optimization. We also demonstrate its statistical efficiency and stability that are especially desirable in limited-data situations, and compare these properties with some existing methods. We present our theory that views SAA as a kernel in an infinite-order symmetric statistic, which can be approximated via bagging. We substantiate our theoretical findings with numerical results
    • …
    corecore