6,683 research outputs found

    Matching games: the least core and the nucleolus

    Get PDF
    A matching game is a cooperative game defined by a graph G=(V,E)G=(V,E). The player set is VV and the value of a coalition SVS \subseteq V is defined as the size of a maximum matching in the subgraph induced by SS. We show that the nucleolus of such games can be computed efficiently. The result is based on an alternative characterization of the least core which may be of independent interest. The general case of weighted matching games remains unsolved. \u

    On some cost allocation problems in communication networks

    Get PDF
    New technologies prompted an explosion in the development of communication networks. Modern network optimization techniques usually lead to a design of the most profitable, or the least cost network that will provide some service to customers. There are various costs and gains associated with building and using a communication network. Moreover, the involved multiple network users and/or owners possibly have conflicting objectives. However, they might cooperate in order to decrease their joint cost or increase their joint profit. Clearly, these individuals or organizations will support a globally \u27attractive\u27 solution(s) only if their expectations for a \u27fair share\u27 of the cost or profit are met. Consequently, providing network developers, users and owners with efficiently computable \u27fair\u27 cost allocation solution procedures is of great importance for strategic management. This work is an overview of some recent results (some already published as well as some new) in the development of cooperative game theory based mechanisms to efficiently compute \u27attractive\u27 cost allocation solutions for several important classes of communication networks

    Cost allocation in connection and conflict problems on networks: a cooperative game theoretic approach

    Get PDF
    This thesis examines settings where multiple decision makers with conflicting interests benefit from cooperation in joint combinatorial optimisation problems. It draws on cooperative game theory, polyhedral theory and graph theory to address cost sharing in joint single-source shortest path problems and joint weighted minimum colouring problems. The primary focus of the thesis are problems where each agent corresponds to a vertex of an undirected complete graph, in which a special vertex represents the common supplier. The joint combinatorial optimisation problem consists of determining the shortest paths from the supplier to all other vertices in the graph. The optimal solution is a shortest path tree of the graph and the aim is to allocate the cost of this shortest path tree amongst the agents. The thesis defines shortest path tree problems, proposes allocation rules and analyses the properties of these allocation rules. It furthermore introduces shortest path tree games and studies the properties of these games. Various core allocations for shortest path tree games are introduced and polyhedral properties of the core are studied. Moreover, computational results on finding the core and the nucleolus of shortest path tree games for the application of cost allocation in Wireless Multihop Networks are presented. The secondary focus of the thesis are problems where each agent is interested in having access to a number of facilities but can be in conflict with other agents. If two agents are in conflict, then they should have access to disjoint sets of facilities. The aim is to allocate the cost of the minimum number of facilities required by the agents amongst them. The thesis models these cost allocation problems as a class of cooperative games called weighted minimum colouring games, and characterises total balancedness and submodularity of this class of games using the properties of the underlying graph

    Survivability through pre-configured protection in optical mesh networks

    Get PDF
    Network survivability is a very important issue, especially in optical networks that carry huge amount of traffic. Network failures which may be caused by human errors, malfunctional systems and natural disaster (eg. Earthquakes and lightening storms), have occurred quite frequently and sometimes with unpredictable consequences. Survivability is defined as the ability of the network to maintain the continuity of service against failures of network components. Pre-configuration and dynamic restoration are two schemes for network survivability. For each scheme, survivability algorithms can be applied at either Optical Channel sublayer (Och) known as link-based. Or, Optical Multiplex Section sublayer (OMS) known as path-based. The efficiency of survivability algorithms can be assessed through such criteria as capacity efficiency, restoration time and quality service. Dynamic restoration is more efficient than pre-configuration in terms of capacity resource utilization, but restoration time is longer and 100% service recovery cannot be guaranteed because sufficient spare capacity may not be available at the time of failures. Similarly, path-based survivability offers a high performance scheme for utilizing capacity resource, but restoration time is longer than link based survivability
    corecore