29,886 research outputs found

    The Complexity of Finding Reset Words in Finite Automata

    Get PDF
    We study several problems related to finding reset words in deterministic finite automata. In particular, we establish that the problem of deciding whether a shortest reset word has length k is complete for the complexity class DP. This result answers a question posed by Volkov. For the search problems of finding a shortest reset word and the length of a shortest reset word, we establish membership in the complexity classes FP^NP and FP^NP[log], respectively. Moreover, we show that both these problems are hard for FP^NP[log]. Finally, we observe that computing a reset word of a given length is FNP-complete.Comment: 16 pages, revised versio

    A Crevice on the Crane Beach: Finite-Degree Predicates

    Full text link
    First-order logic (FO) over words is shown to be equiexpressive with FO equipped with a restricted set of numerical predicates, namely the order, a binary predicate MSB0_0, and the finite-degree predicates: FO[Arb] = FO[<, MSB0_0, Fin]. The Crane Beach Property (CBP), introduced more than a decade ago, is true of a logic if all the expressible languages admitting a neutral letter are regular. Although it is known that FO[Arb] does not have the CBP, it is shown here that the (strong form of the) CBP holds for both FO[<, Fin] and FO[<, MSB0_0]. Thus FO[<, Fin] exhibits a form of locality and the CBP, and can still express a wide variety of languages, while being one simple predicate away from the expressive power of FO[Arb]. The counting ability of FO[<, Fin] is studied as an application.Comment: Submitte

    On the complexity of computing Kronecker coefficients

    Full text link
    We study the complexity of computing Kronecker coefficients g(λ,μ,ν)g(\lambda,\mu,\nu). We give explicit bounds in terms of the number of parts \ell in the partitions, their largest part size NN and the smallest second part MM of the three partitions. When M=O(1)M = O(1), i.e. one of the partitions is hook-like, the bounds are linear in logN\log N, but depend exponentially on \ell. Moreover, similar bounds hold even when M=eO()M=e^{O(\ell)}. By a separate argument, we show that the positivity of Kronecker coefficients can be decided in O(logN)O(\log N) time for a bounded number \ell of parts and without restriction on MM. Related problems of computing Kronecker coefficients when one partition is a hook, and computing characters of SnS_n are also considered.Comment: v3: incorporated referee's comments; accepted to Computational Complexit
    corecore