456 research outputs found

    Computational Chemotaxis in Ants and Bacteria over Dynamic Environments

    Full text link
    Chemotaxis can be defined as an innate behavioural response by an organism to a directional stimulus, in which bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemicals in their environment. This is important for bacteria to find food (e.g., glucose) by swimming towards the highest concentration of food molecules, or to flee from poisons. Based on self-organized computational approaches and similar stigmergic concepts we derive a novel swarm intelligent algorithm. What strikes from these observations is that both eusocial insects as ant colonies and bacteria have similar natural mechanisms based on stigmergy in order to emerge coherent and sophisticated patterns of global collective behaviour. Keeping in mind the above characteristics we will present a simple model to tackle the collective adaptation of a social swarm based on real ant colony behaviors (SSA algorithm) for tracking extrema in dynamic environments and highly multimodal complex functions described in the well-know De Jong test suite. Later, for the purpose of comparison, a recent model of artificial bacterial foraging (BFOA algorithm) based on similar stigmergic features is described and analyzed. Final results indicate that the SSA collective intelligence is able to cope and quickly adapt to unforeseen situations even when over the same cooperative foraging period, the community is requested to deal with two different and contradictory purposes, while outperforming BFOA in adaptive speed. Results indicate that the present approach deals well in severe Dynamic Optimization problems.Comment: 8 pages, 6 figures, in CEC 07 - IEEE Congress on Evolutionary Computation, ISBN 1-4244-1340-0, pp. 1009-1017, Sep. 200

    Mathematical models for chemotaxis and their applications in self-organisation phenomena

    Get PDF
    Chemotaxis is a fundamental guidance mechanism of cells and organisms, responsible for attracting microbes to food, embryonic cells into developing tissues, immune cells to infection sites, animals towards potential mates, and mathematicians into biology. The Patlak-Keller-Segel (PKS) system forms part of the bedrock of mathematical biology, a go-to-choice for modellers and analysts alike. For the former it is simple yet recapitulates numerous phenomena; the latter are attracted to these rich dynamics. Here I review the adoption of PKS systems when explaining self-organisation processes. I consider their foundation, returning to the initial efforts of Patlak and Keller and Segel, and briefly describe their patterning properties. Applications of PKS systems are considered in their diverse areas, including microbiology, development, immunology, cancer, ecology and crime. In each case a historical perspective is provided on the evidence for chemotactic behaviour, followed by a review of modelling efforts; a compendium of the models is included as an Appendix. Finally, a half-serious/half-tongue-in-cheek model is developed to explain how cliques form in academia. Assumptions in which scholars alter their research line according to available problems leads to clustering of academics and the formation of "hot" research topics.Comment: 35 pages, 8 figures, Submitted to Journal of Theoretical Biolog

    Description and composition of bio-inspired design patterns: a complete overview

    Get PDF
    In the last decade, bio-inspired self-organising mechanisms have been applied to different domains, achieving results beyond traditional approaches. However, researchers usually use these mechanisms in an ad-hoc manner. In this way, their interpretation, definition, boundary (i.e. when one mechanism stops, and when another starts), and implementation typically vary in the existing literature, thus preventing these mechanisms from being applied clearly and systematically to solve recurrent problems. To ease engineering of artificial bio-inspired systems, this paper describes a catalogue of bio-inspired mechanisms in terms of modular and reusable design patterns organised into different layers. This catalogue uniformly frames and classifies a variety of different patterns. Additionally, this paper places the design patterns inside existing self-organising methodologies and hints for selecting and using a design patter

    A Hybrid Bacterial Swarming Methodology for Job Shop Scheduling Environment

    Get PDF
    Optimized utilization of resources is the need of the hour in any manufacturing system. A properly planned schedule is often required to facilitate optimization. This makes scheduling a significant phase in any manufacturing scenario. The Job Shop Scheduling Problem is an operation sequencing problem on multiple machines with some operation and machine precedence constraints, aimed to find the best sequence of operations on each machine in order to optimize a set of objectives. Bacterial Foraging algorithm is a relatively new biologically inspired optimization technique proposed based on the foraging behaviour of E.coli bacteria. Harmony Search is a phenomenon mimicking algorithm devised by the improvisation process of musicians. In this research paper, Harmony Search is hybridized with bacterial foraging to improve its scheduling strategies. A proposed Harmony Bacterial Swarming Algorithm is developed and tested with benchmark Job Shop instances. Computational results have clearly shown the competence of our method in obtaining the best schedule

    Bioinspired Computing: Swarm Intelligence

    Get PDF

    Algorithms for Olfactory Search across Species

    Get PDF
    Localizing the sources of stimuli is essential. Most organisms cannot eat, mate, or escape without knowing where the relevant stimuli originate. For many, if not most, animals, olfaction plays an essential role in search. While microorganismal chemotaxis is relatively well understood, in larger animals the algorithms and mechanisms of olfactory search remain mysterious. In this symposium, we will present recent advances in our understanding of olfactory search in flies and rodents. Despite their different sizes and behaviors, both species must solve similar problems, including meeting the challenges of turbulent airflow, sampling the environment to optimize olfactory information, and incorporating odor information into broader navigational systems

    The Emergence of Lines of Hierarchy in Collective Motion of Biological Systems

    Full text link
    The emergence of large scale structures in biological systems, and in particular the formation of lines of hierarchy, is observed in many scales, from collections of cells to groups of insects to herds of animals. Motivated by phenomena in chemotaxis and phototaxis, we present a new class of alignment models which exhibit alignment into lines. The spontaneous formation of such ``fingers" can be interpreted as the emergence of leaders and followers in a system of identically interacting agents. Various numerical examples are provided, which demonstrate emergent behaviors similar to the ``fingering'' phenomenon observed in some phototaxis and chemotaxis experiments; this phenomenon is generally known as a challenging pattern to capture for existing models. The novel pairwise interactions provides a fundamental mechanism by which agents may form social hierarchy across a wide range of biological systems
    corecore