23 research outputs found

    Enhancing the navigability in a social network of smart objects: a Shapley-value based approach

    Get PDF
    The Internet of Things (IoT) holds the promise to interconnect any possible object capable of providing useful information about the physical world for the benefit of humans' quality of life. The increasing number of heterogeneous objects that the IoT has to manage introduces crucial scalability issues that still need appropriate solutions. In this respect, one promising proposal is the Social IoT (SIoT) paradigm, whose main principle is to enable objects to autonomously establish social links with each other (adhering to rules set by their owners). "Friend" objects exchange data in a distributed manner and this avoids centralized solutions to implement major functions, such as: node discovery, information search, and trustworthiness management. However, the number and types of established friendships affect network navigability. This issue is the focus of this paper, which proposes an efficient, distributed and dynamic solution for the objects to select the right friends for the benefit of the overall network connectivity. The proposed friendship selection mechanism relies on a game theoretic model and a Shapley-value based algorithm. Two different utility functions are defined and evaluated based on either a group degree centrality and an average local clustering parameter. The comparison in terms of global navigability is measured in terms of average path length for the interconnection of any couple of nodes in the network. Results show that the group degree centrality brings to an enhanced degree of navigability thanks to the ability to create a suitable core of hubs

    Multiagent Industrial Symbiosis Systems

    Get PDF

    Game Theory

    Get PDF
    The Special Issue “Game Theory” of the journal Mathematics provides a collection of papers that represent modern trends in mathematical game theory and its applications. The works address the problem of constructing and implementation of solution concepts based on classical optimality principles in different classes of games. In the case of non-cooperative behavior of players, the Nash equilibrium as a basic optimality principle is considered in both static and dynamic game settings. In the case of cooperative behavior of players, the situation is more complicated. As is seen from presented papers, the direct use of cooperative optimality principles in dynamic and differential games may bring time or subgame inconsistency of a solution which makes the cooperative schemes unsustainable. The notion of time or subgame consistency is crucial to the success of cooperation in a dynamic framework. In the works devoted to dynamic or differential games, this problem is analyzed and the special regularization procedures proposed to achieve time or subgame consistency of cooperative solutions. Among others, special attention in the presented book is paid to the construction of characteristic functions which determine the power of coalitions in games. The book contains many multi-disciplinary works applied to economic and environmental applications in a coherent manner

    Facilitating Cooperative Truck Platooning for Energy Savings: Path Planning, Platoon Formation and Benefit Redistribution

    Full text link
    Enabled by the connected and automated vehicle (CAV) technology, cooperative truck platooning that offers promising energy savings is likely to be implemented soon. However, as the trucking industry operates in a highly granular manner so that the trucks usually vary in their operation schedules, vehicle types and configurations, it is inevitable that 1) the spontaneous platooning over a spatial network is rare, 2) the total fuel savings vary from platoon to platoon, and 3) the benefit achieved within a platoon differs from position to position, e.g., the lead vehicle always achieves the least fuel-saving. Consequently, trucks from different owners may not have the opportunities to platoon with others if no path coordination is performed. Even if they happen to do so, they may tend to change positions in the formed platoons to achieve greater benefits, yielding behaviorally unstable platoons with less energy savings and more disruptions to traffic flows. This thesis proposes a hierarchical modeling framework to explicate the necessitated strategies that facilitate cooperative truck platooning. An empirical study is first conducted to scrutinize the energy-saving potentials of the U.S. national freight network. By comparing the performance under scheduled platooning and ad-hoc platooning, the author shows that the platooning opportunities can be greatly improved by careful path planning, thereby yielding substantial energy savings. For trucks assembled on the same path and can to platoon together, the second part of the thesis investigates the optimal platoon formation that maximizes total platooning utility and benefits redistribution mechanisms that address the behavioral instability issue. Both centralized and decentralized approaches are proposed. In particular, the decentralized approach employs a dynamic process where individual trucks or formed platoons are assumed to act as rational agents. The agents decide whether to form a larger, better platoon considering their own utilities under the pre-defined benefit reallocation mechanisms. Depending on whether the trucks are single-brand or multi-brand, whether there is a complete information setting or incomplete information setting, three mechanisms, auction, bilateral trade model, and one-sided matching are proposed. The centralized approach yields a near-optimal solution for the whole system and is more computationally efficient than conventional algorithms. The decentralized approach is stable, more flexible, and computational efficient while maintaining acceptable degrees of optimality. The mechanisms proposed can apply to not only under the truck platooning scenario but also other forms of shared mobility.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163047/1/xtsun_1.pd

    Constraint Optimisation Techniques for Real-World Applications

    Get PDF
    Constraint optimisation represents a fundamental technique that has been successfully employed in Multi-Agent Systems (MAS) in order to face a number of multi-agent coordination challenges. In this thesis we focus on Coalition Formation (CF), one of the key approaches for coordination in MAS. CF aims at the formation of groups that maximise a particular objective functions (e.g., arrange shared rides among multiple agents in order to minimise travel costs). Specifically, we discuss a special case of CF known as Graph-Constrained CF (GCCF) where a network connecting the agents constrains the formation of coalitions. We focus on this type of problem given that in many real-world applications, agents may be connected by a communication network or only trust certain peers in their social network. In particular, the contributions of this thesis are the following. We propose a novel representation of this problem and we design an efficient solution algorithm, i.e., CFSS. We evaluate CFSS on GCCF scenarios like collective energy purchasing and social ridesharing using realistic data (i.e., energy consumption profiles from households in the UK, GeoLife for spatial data, and Twitter as social network). Results show that CFSS outperforms state of the art GCCF approaches both in terms of runtime and scalability. CFSS is the first algorithm that provides solutions with good quality guarantees for large-scale GCCF instances with thousands of agents (i.e., more that 2700). In addition, we address the problem of computing the transfer or payment to each agent to ensure it is fairly rewarded for its contribution to its coalition. This aspect of CF, denoted as payment computation, is of utmost importance in scenario characterised by agents with rational behaviours, such as collective energy purchasing and social ridesharing. In this perspective, we propose PK, the first method to compute payments in large-scale GCCF scenarios that are also stable in a game-theoretic sense. Finally, we provide an alternative method for the solution of GCCF, by exploiting the close relation between such problem and Constraint Optimisation Problems (COPs). We consider Bucket Elimination (BE), one of the most important algorithmic frameworks to solve COPs, and we propose CUBE, a highly-parallel GPU implementation of the most computationally intensive operations of BE. CUBE adopts an efficient memory layout that results in a high computational throughput. In addition, CUBE is not limited by the amount of memory of the GPU and, hence, it can cope with problems of realistic nature. CUBE has been tested on the SPOT5 dataset, which contains several satellite management problems modelled as COPs. Moreover, we use CUBE to solve COP-GCCF, the first COP formalisation of GCCF that results in a linear number of constraints with respect to the number of agents. This property is crucial to ensure the scalability of our approach. Results show that COP-GCCF produces significant improvements with respect to state of the art algorithms when applied to a realistic graph topology (i.e., Twitter), both in terms of runtime and memory. Overall, this thesis provides a novel perspective on important techniques in the context of MAS (such as CF and constraint optimisation), allowing to solve realistic problems involving thousands of agents for the first time

    Coalitional model predictive control for systems of systems

    Get PDF
    An aspect so far rarely contemplated in distributed control problems is the explicit consideration of individual (local) interests of the components of a complex system. Indeed, the focus of the majority of the literature about distributed control has been the overall system performance. While on one hand this permitted to address fundamental properties of centralized control, such as system-wide optimality and stability, one the other hand it implied assuming unrestricted cooperation across local controllers. However, when dealing with multi-agent systems with a strong heterogeneous character, cooperation between the agents cannot be taken for granted (due to, for example, logistics, market competition), and selfish interests may not be neglected. Another critical point that must be kept into consideration is the diversity characterizing systems of systems (SoS), yielding very complex interactions between the agents involved (one example of such system is the smart grid). In order to tackle such inherent aspects of SoS, the research presented in this thesis has been concerned with the development of a novel framework, the coalitional control, that extends the scope of advanced control methods (in particular MPC) by drawing concepts from cooperative game theory that are suited for the inherent heterogeneity of SoS, providing as well an economical interpretation useful to explicitly take into account local selfish interests. Thus, coalitional control aims at governing the association/dissociation dynamics of the agents controlling the system, according to the expected benefits of their possible cooperation. From a control theoretical perspective, this framework is founded on the theory of switched systems and variable structure/topology networked systems, topics that are recently experiencing a renewed interest within the community. The main concepts and challenges in coalitional control, and the links with cooperative network game theory are presented in this document, tracing a path from model partitioning to the control schemes whose principles delineate the idea of coalitional control. This thesis focuses on two basic architectures: (i) a hierarchically supervised evolution of the coalitional structure, and (ii) a protocol for autonomous negotiation between the agents, with specific mechanisms for benefit redistribution, leading to the emergence of cooperating clusters.Premio Extraordinario de Doctorado U
    corecore