150 research outputs found

    Active inference, stressors, and psychological trauma: A neuroethological model of (mal)adaptive explore-exploit dynamics in ecological context

    Get PDF
    This paper offers a formal account of emotional inference and stress-related behaviour, using the notion of active inference. We formulate responses to stressful scenarios in terms of Bayesian belief-updating and subsequent policy selection; namely, planning as (active) inference. Using a minimal model of how creatures or subjects account for their sensations (and subsequent action), we deconstruct the sequences of belief updating and behaviour that underwrite stress-related responses – and simulate the aberrant responses of the sort seen in post-traumatic stress disorder (PTSD). Crucially, the model used for belief-updating generates predictions in multiple (exteroceptive, proprioceptive and interoceptive) modalities, to provide an integrated account of evidence accumulation and multimodal integration that has consequences for both motor and autonomic responses. The ensuing phenomenology speaks to many constructs in the ecological and clinical literature on stress, which we unpack with reference to simulated inference processes and accompanying neuronal responses. A key insight afforded by this formal approach rests on the trade-off between the epistemic affordance of certain cues (that resolve uncertainty about states of affairs in the environment) and the consequences of epistemic foraging (that may be in conflict with the instrumental or pragmatic value of ‘fleeing’ or ‘freezing’). Starting from first principles, we show how this trade-off is nuanced by prior (subpersonal) beliefs about the outcomes of behaviour – beliefs that, when held with unduly high precision, can lead to (Bayes optimal) responses that closely resemble PTSD

    Computational neuroscience across the lifespan: Promises and pitfalls

    Get PDF
    In recent years, the application of computational modeling in studies on age-related changes in decision making and learning has gained in popularity. One advantage of computational models is that they provide access to latent variables that cannot be directly observed from behavior. In combination with experimental manipulations, these latent variables can help to test hypotheses about age-related changes in behavioral and neurobiological measures at a level of specificity that is not achievable with descriptive analysis approaches alone. This level of specificity can in turn be beneficial to establish the identity of the corresponding behavioral and neurobiological mechanisms. In this paper, we will illustrate applications of computational methods using examples of lifespan research on risk taking, strategy selection and reinforcement learning. We will elaborate on problems that can occur when computational neuroscience methods are applied to data of different age groups. Finally, we will discuss potential targets for future applications and outline general shortcomings of computational neuroscience methods for research on human lifespan development

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Tätigkeitsbericht 2017-2019/20

    Get PDF

    Tätigkeitsbericht 2014-2016

    Get PDF

    Tätigkeitsbericht 2011-2013

    Get PDF

    COMPARATIVE PHILOSOPHY VOL 2 NO 2 WHOLE SET

    Get PDF
    • …
    corecore