2,452 research outputs found

    Computation with competing patterns in Life-like automaton

    Full text link

    Computational universes

    Full text link
    Suspicions that the world might be some sort of a machine or algorithm existing ``in the mind'' of some symbolic number cruncher have lingered from antiquity. Although popular at times, the most radical forms of this idea never reached mainstream. Modern developments in physics and computer science have lent support to the thesis, but empirical evidence is needed before it can begin to replace our contemporary world view.Comment: Several corrections of typos and smaller revisions, final versio

    Phase transitions of extended-range probabilistic cellular automata with two absorbing states

    Full text link
    We study phase transitions in a long-range one-dimensional cellular automaton with two symmetric absorbing states. It includes and extends several other models, like the Ising and Domany-Kinzel ones. It is characterized by a competing ferromagnetic linear coupling and an antiferromagnetic nonlinear one. Despite its simplicity, this model exhibits an extremely rich phase diagram. We present numerical results and mean-field approximations.Comment: New and expanded versio

    Cellular automata and self-organized criticality

    Get PDF
    Cellular automata provide a fascinating class of dynamical systems capable of diverse complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and time scales.Comment: 23 pages, 12 figures (most in color); uses sprocl.tex; chapter submitted for "Some new directions in science on computers," G. Bhanot, S. Chen, and P. Seiden, ed

    Massively parallel computing on an organic molecular layer

    Full text link
    Current computers operate at enormous speeds of ~10^13 bits/s, but their principle of sequential logic operation has remained unchanged since the 1950s. Though our brain is much slower on a per-neuron base (~10^3 firings/s), it is capable of remarkable decision-making based on the collective operations of millions of neurons at a time in ever-evolving neural circuitry. Here we use molecular switches to build an assembly where each molecule communicates-like neurons-with many neighbors simultaneously. The assembly's ability to reconfigure itself spontaneously for a new problem allows us to realize conventional computing constructs like logic gates and Voronoi decompositions, as well as to reproduce two natural phenomena: heat diffusion and the mutation of normal cells to cancer cells. This is a shift from the current static computing paradigm of serial bit-processing to a regime in which a large number of bits are processed in parallel in dynamically changing hardware.Comment: 25 pages, 6 figure
    • 

    corecore