65,437 research outputs found

    Discrete logarithms in curves over finite fields

    Get PDF
    A survey on algorithms for computing discrete logarithms in Jacobians of curves over finite fields

    Black Box White Arrow

    Full text link
    The present paper proposes a new and systematic approach to the so-called black box group methods in computational group theory. Instead of a single black box, we consider categories of black boxes and their morphisms. This makes new classes of black box problems accessible. For example, we can enrich black box groups by actions of outer automorphisms. As an example of application of this technique, we construct Frobenius maps on black box groups of untwisted Lie type in odd characteristic (Section 6) and inverse-transpose automorphisms on black box groups encrypting (P)SLn(Fq){\rm (P)SL}_n(\mathbb{F}_q). One of the advantages of our approach is that it allows us to work in black box groups over finite fields of big characteristic. Another advantage is explanatory power of our methods; as an example, we explain Kantor's and Kassabov's construction of an involution in black box groups encrypting SL2(2n){\rm SL}_2(2^n). Due to the nature of our work we also have to discuss a few methodological issues of the black box group theory. The paper is further development of our text "Fifty shades of black" [arXiv:1308.2487], and repeats parts of it, but under a weaker axioms for black box groups.Comment: arXiv admin note: substantial text overlap with arXiv:1308.248

    Quantum algorithms for problems in number theory, algebraic geometry, and group theory

    Full text link
    Quantum computers can execute algorithms that sometimes dramatically outperform classical computation. Undoubtedly the best-known example of this is Shor's discovery of an efficient quantum algorithm for factoring integers, whereas the same problem appears to be intractable on classical computers. Understanding what other computational problems can be solved significantly faster using quantum algorithms is one of the major challenges in the theory of quantum computation, and such algorithms motivate the formidable task of building a large-scale quantum computer. This article will review the current state of quantum algorithms, focusing on algorithms for problems with an algebraic flavor that achieve an apparent superpolynomial speedup over classical computation.Comment: 20 pages, lecture notes for 2010 Summer School on Diversities in Quantum Computation/Information at Kinki Universit
    • …
    corecore