1,426 research outputs found

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    Low Power Architectures for MPEG-4 AVC/H.264 Video Compression

    Get PDF

    Video special effects editing in MPEG-2 compressed video

    Get PDF

    Energy-efficient acceleration of MPEG-4 compression tools

    Get PDF
    We propose novel hardware accelerator architectures for the most computationally demanding algorithms of the MPEG-4 video compression standard-motion estimation, binary motion estimation (for shape coding), and the forward/inverse discrete cosine transforms (incorporating shape adaptive modes). These accelerators have been designed using general low-energy design philosophies at the algorithmic/architectural abstraction levels. The themes of these philosophies are avoiding waste and trading area/performance for power and energy gains. Each core has been synthesised targeting TSMC 0.09 ÎŒm TCBN90LP technology, and the experimental results presented in this paper show that the proposed cores improve upon the prior art

    Complexity management of H.264/AVC video compression.

    Get PDF
    The H. 264/AVC video coding standard offers significantly improved compression efficiency and flexibility compared to previous standards. However, the high computational complexity of H. 264/AVC is a problem for codecs running on low-power hand held devices and general purpose computers. This thesis presents new techniques to reduce, control and manage the computational complexity of an H. 264/AVC codec. A new complexity reduction algorithm for H. 264/AVC is developed. This algorithm predicts "skipped" macroblocks prior to motion estimation by estimating a Lagrange ratedistortion cost function. Complexity savings are achieved by not processing the macroblocks that are predicted as "skipped". The Lagrange multiplier is adaptively modelled as a function of the quantisation parameter and video sequence statistics. Simulation results show that this algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. The complexity reduction algorithm is further developed to achieve complexity-scalable control of the encoding process. The Lagrangian cost estimation is extended to incorporate computational complexity. A target level of complexity is maintained by using a feedback algorithm to update the Lagrange multiplier associated with complexity. Results indicate that scalable complexity control of the encoding process can be achieved whilst maintaining near optimal complexity-rate-distortion performance. A complexity management framework is proposed for maximising the perceptual quality of coded video in a real-time processing-power constrained environment. A real-time frame-level control algorithm and a per-frame complexity control algorithm are combined in order to manage the encoding process such that a high frame rate is maintained without significantly losing frame quality. Subjective evaluations show that the managed complexity approach results in higher perceptual quality compared to a reference encoder that drops frames in computationally constrained situations. These novel algorithms are likely to be useful in implementing real-time H. 264/AVC standard encoders in computationally constrained environments such as low-power mobile devices and general purpose computers

    Fast and parallel video encoding by workload balancing

    Get PDF
    The issue of balancing the macroblocks (MB) computing workload across the processors are explored. These includes, the prediction of the workload based on the previous frame workload and the scheduling of the MB bounded by the locality constraint. The algorithm was implemented on an IBM SP2, and the results showed that the reduction in the worst case delay is around 19-23%, with both the prediction and scheduling overhead taken into account. Because of the critical path reduction, the overall processor utilization was increased and the overall coding rate improved.published_or_final_versio

    Generalized parallelization methodology for video coding

    Get PDF
    This paper describes a generalized parallelization methodology for mapping video coding algorithms onto a multiprocessing architecture, through systematic task decomposition, scheduling and performance analysis. It exploits data parallelism inherent in the coding process and performs task scheduling base on task data size and access locality with the aim to hide as much communication overhead as possible. Utilizing Petri-nets and task graphs for representation and analysis, the method enables parallel video frame capturing, buffering and encoding without extra communication overhead. The theoretical speedup analysis indicates that this method offers excellent communication hiding, resulting in system efficiency well above 90%. A H.261 video encoder has been implemented on a TMS320C80 system using this method, and its performance was measured. The theoretical and measured performances are similar in that the measured speedup of the H.261 is 3.67 and 3.76 on four PP for QCIF and 352×240 video, respectively. They correspond to frame rates of 30.7 frame per second (fps) and 9.25 fps, and system efficiency of 91.8% and 94% respectively. As it is, this method is particularly efficient for platforms with small number of parallel processors.published_or_final_versio

    Implementation of BMA based motion estimation hardware accelerator in HDL

    Full text link
    Motion Estimation in MPEG (Motion Pictures Experts Group) video is a temporal prediction technique. The basic principle of motion estimation is that in most cases, consecutive video frames will be similar except for changes induced by objects moving within the frames. Motion Estimation performs a comprehensive 2-dimensional spatial search for each luminance macroblock (16x16 pixel block). MPEG does not define how this search should be performed. This is a detail that the system designer can choose to implement in one of many possible ways. It is well known that a full, exhaustive search over a wide 2-dimensional area yields the best matching results in most cases, but this performance comes at an extreme computational cost to the encoder. Some lower cost encoders might choose to limit the pixel search range, or use other techniques usually at some cost to the video quality which gives rise to a trade-off; Such algorithms used in image processing are generally computationally expensive. FPGAs are capable of running graphics algorithms at the speed comparable to dedicated graphics chips. At the same time they are configurable through high-level programming languages, e.g. Verilog, VHDL. The work presented entirely focuses upon a Hardware Accelerator capable of performing Motion Estimation, based upon Block Matching Algorithm. The SAD based Full Search Motion Estimation coded using Verilog HDL, relies upon a 32x32 pixel search area to find the best match for single 16x16 macroblock; Keywords. Motion Estimation, MPEG, macroblock, FPGA, SAD, Verilog, VHDL
    • 

    corecore