483 research outputs found

    On the evolutionary optimisation of many conflicting objectives

    Get PDF
    This inquiry explores the effectiveness of a class of modern evolutionary algorithms, represented by Non-dominated Sorting Genetic Algorithm (NSGA) components, for solving optimisation tasks with many conflicting objectives. Optimiser behaviour is assessed for a grid of mutation and recombination operator configurations. Performance maps are obtained for the dual aims of proximity to, and distribution across, the optimal trade-off surface. Performance sweet-spots for both variation operators are observed to contract as the number of objectives is increased. Classical settings for recombination are shown to be suitable for small numbers of objectives but correspond to very poor performance for higher numbers of objectives, even when large population sizes are used. Explanations for this behaviour are offered via the concepts of dominance resistance and active diversity promotion

    An Improved NSGA-II and its Application for Reconfigurable Pixel Antenna Design

    Get PDF
    Based on the elitist non-dominated sorting genetic algorithm (NSGA-II) for multi-objective optimization problems, an improved scheme with self-adaptive crossover and mutation operators is proposed to obtain good optimization performance in this paper. The performance of the improved NSGA-II is demonstrated with a set of test functions and metrics taken from the standard literature on multi-objective optimization. Combined with the HFSS solver, one pixel antenna with reconfigurable radiation patterns, which can steer its beam into six different directions (θDOA = ± 15°, ± 30°, ± 50°) with a 5 % overlapping impedance bandwidth (S11 < − 10 dB) and a realized gain over 6 dB, is designed by the proposed self-adaptive NSGA-II

    Multiobjective evolutionary algorithm based on vector angle neighborhood

    Get PDF
    Selection is a major driving force behind evolution and is a key feature of multiobjective evolutionary algorithms. Selection aims at promoting the survival and reproduction of individuals that are most fitted to a given environment. In the presence of multiple objectives, major challenges faced by this operator come from the need to address both the population convergence and diversity, which are conflicting to a certain extent. This paper proposes a new selection scheme for evolutionary multiobjective optimization. Its distinctive feature is a similarity measure for estimating the population diversity, which is based on the angle between the objective vectors. The smaller the angle, the more similar individuals. The concept of similarity is exploited during the mating by defining the neighborhood and the replacement by determining the most crowded region where the worst individual is identified. The latter is performed on the basis of a convergence measure that plays a major role in guiding the population towards the Pareto optimal front. The proposed algorithm is intended to exploit strengths of decomposition-based approaches in promoting diversity among the population while reducing the user's burden of specifying weight vectors before the search. The proposed approach is validated by computational experiments with state-of-the-art algorithms on problems with different characteristics. The obtained results indicate a highly competitive performance of the proposed approach. Significant advantages are revealed when dealing with problems posing substantial difficulties in keeping diversity, including many-objective problems. The relevance of the suggested similarity and convergence measures are shown. The validity of the approach is also demonstrated on engineering problems.This work was supported by the Portuguese Fundacao para a Ciencia e Tecnologia under grant PEst-C/CTM/LA0025/2013 (Projecto Estrategico - LA 25 - 2013-2014 - Strategic Project - LA 25 - 2013-2014).info:eu-repo/semantics/publishedVersio

    Rank-Based Learning and Local Model Based Evolutionary Algorithm for High-Dimensional Expensive Multi-Objective Problems

    Full text link
    Surrogate-assisted evolutionary algorithms have been widely developed to solve complex and computationally expensive multi-objective optimization problems in recent years. However, when dealing with high-dimensional optimization problems, the performance of these surrogate-assisted multi-objective evolutionary algorithms deteriorate drastically. In this work, a novel Classifier-assisted rank-based learning and Local Model based multi-objective Evolutionary Algorithm (CLMEA) is proposed for high-dimensional expensive multi-objective optimization problems. The proposed algorithm consists of three parts: classifier-assisted rank-based learning, hypervolume-based non-dominated search, and local search in the relatively sparse objective space. Specifically, a probabilistic neural network is built as classifier to divide the offspring into a number of ranks. The offspring in different ranks uses rank-based learning strategy to generate more promising and informative candidates for real function evaluations. Then, radial basis function networks are built as surrogates to approximate the objective functions. After searching non-dominated solutions assisted by the surrogate model, the candidates with higher hypervolume improvement are selected for real evaluations. Subsequently, in order to maintain the diversity of solutions, the most uncertain sample point from the non-dominated solutions measured by the crowding distance is selected as the guided parent to further infill in the uncertain region of the front. The experimental results of benchmark problems and a real-world application on geothermal reservoir heat extraction optimization demonstrate that the proposed algorithm shows superior performance compared with the state-of-the-art surrogate-assisted multi-objective evolutionary algorithms. The source code for this work is available at https://github.com/JellyChen7/CLMEA

    Evolutionary Many-objective Optimization of Hybrid Electric Vehicle Control: From General Optimization to Preference Articulation

    Get PDF
    Many real-world optimization problems have more than three objectives, which has triggered increasing research interest in developing efficient and effective evolutionary algorithms for solving many-objective optimization problems. However, most many-objective evolutionary algorithms have only been evaluated on benchmark test functions and few applied to real-world optimization problems. To move a step forward, this paper presents a case study of solving a many-objective hybrid electric vehicle controller design problem using three state-of-the-art algorithms, namely, a decomposition based evolutionary algorithm (MOEA/D), a non-dominated sorting based genetic algorithm (NSGA-III), and a reference vector guided evolutionary algorithm (RVEA). We start with a typical setting aiming at approximating the Pareto front without introducing any user preferences. Based on the analyses of the approximated Pareto front, we introduce a preference articulation method and embed it in the three evolutionary algorithms for identifying solutions that the decision-maker prefers. Our experimental results demonstrate that by incorporating user preferences into many-objective evolutionary algorithms, we are not only able to gain deep insight into the trade-off relationships between the objectives, but also to achieve high-quality solutions reflecting the decision-maker’s preferences. In addition, our experimental results indicate that each of the three algorithms examined in this work has its unique advantages that can be exploited when applied to the optimization of real-world problems
    corecore