1,615 research outputs found

    Digital certificates and threshold cryptography

    Get PDF
    This dissertation discusses the use of secret sharing cryptographic protocols for distributing and sharing of secret documents, in our case PDF documents. We discuss the advantages and uses of such a system in the context of collaborative environments. Description of the cryptographic protocol involved and the necessary Public Key Infrastructure (PKI) shall be presented. We also provide an implementation of this framework as a “proof of concept” and fundament the use of a certificate extension as the basis for threshold cryptography. Details of the shared secret distribution protocol and shared secret recovery protocol shall be given as well as the associated technical implementation details. The actual secret sharing algorithm implemented at this stage is based on an existing well known secret sharing scheme that uses polynomial interpolation over a finite field. Finally we conclude with a practical assessment of our prototype

    Coding for Security and Reliability in Distributed Systems

    Get PDF
    This dissertation studies the use of coding techniques to improve the reliability and security of distributed systems. The first three parts focus on distributed storage systems, and study schemes that encode a message into n shares, assigned to n nodes, such that any n - r nodes can decode the message (reliability) and any colluding z nodes cannot infer any information about the message (security). The objective is to optimize the computational, implementation, communication and access complexity of the schemes during the process of encoding, decoding and repair. These are the key metrics of the schemes so that when they are applied in practical distributed storage systems, the systems are not only reliable and secure, but also fast and cost-effective. Schemes with highly efficient computation and implementation are studied in Part I. For the practical high rate case of r ≤ 3 and z ≤ 3, we construct schemes that require only r + z XORs to encode and z XORs to decode each message bit, based on practical erasure codes including the B, EVENODD and STAR codes. This encoding and decoding complexity is shown to be optimal. For general r and z, we design schemes over a special ring from Cauchy matrices and Vandermonde matrices. Both schemes can be efficiently encoded and decoded due to the structure of the ring. We also discuss methods to shorten the proposed schemes. Part II studies schemes that are efficient in terms of communication and access complexity. We derive a lower bound on the decoding bandwidth, and design schemes achieving the optimal decoding bandwidth and access. We then design schemes that achieve the optimal bandwidth and access not only for decoding, but also for repair. Furthermore, we present a family of Shamir's schemes with asymptotically optimal decoding bandwidth. Part III studies the problem of secure repair, i.e., reconstructing the share of a (failed) node without leaking any information about the message. We present generic secure repair protocols that can securely repair any linear schemes. We derive a lower bound on the secure repair bandwidth and show that the proposed protocols are essentially optimal in terms of bandwidth. In the final part of the dissertation, we study the use of coding techniques to improve the reliability and security of network communication. Specifically, in Part IV we draw connections between several important problems in network coding. We present reductions that map an arbitrary multiple-unicast network coding instance to a unicast secure network coding instance in which at most one link is eavesdropped, or a unicast network error correction instance in which at most one link is erroneous, such that a rate tuple is achievable in the multiple-unicast network coding instance if and only if a corresponding rate is achievable in the unicast secure network coding instance, or in the unicast network error correction instance. Conversely, we show that an arbitrary unicast secure network coding instance in which at most one link is eavesdropped can be reduced back to a multiple-unicast network coding instance. Additionally, we show that the capacity of a unicast network error correction instance in general is not (exactly) achievable. We derive upper bounds on the secrecy capacity for the secure network coding problem, based on cut-sets and the connectivity of links. Finally, we study optimal coding schemes for the network error correction problem, in the setting that the network and adversary parameters are not known a priori.</p

    Secure message transmission and its applications

    Get PDF
    In this thesis we focus on various aspects of secure message transmission protocols. Such protocols achieve the secure transmission of a message from a sender to a receiver - where the term “secure” encapsulates the notion of privacy and reliability of message transmission. These two parties are connected using an underlying network in which a static computationally unlimited active adversary able to corrupt up to t network nodes is assumed to be present. Such protocols are important to study as they are used extensively in various cryptographic protocols and are of interest to other research areas such as ad-hoc networks, military networks amongst others. Optimal bounds for the number of phases (communication from sender to receiver or vice versa), connectivity requirements (number of node disjoint network paths connecting sender and receiver - denoted by n), communication complexity (complexity of the number of field elements sent - where F is the finite field used and jFj = q) and transmission complexity (proportion of communication complexity to complexity of secrets transmitted) for secure message transmission protocols have been proven in previous work. In the one-phase model it has been shown that n 3t+1 node disjoint paths are required to achieve perfect communication. In the two phase model only n 2t + 1 node disjoint paths are necessary. This connectivity is also the required bound for almost perfectly secure one-phase protocols - protocols which achieve perfect privacy but with a negligible probability may fail to achieve reliability. In such cases the receiver accepts a different message to that transmitted by the sender or does not accept any message. The main focus of recent research in secure message transmission protocols has been to present new protocols which achieve optimal transmission complexity. This has been achieved through the transmission of multiple messages. If a protocol has a communication complexity of O(n3) field elements, to achieve optimal transmission complexity O(n2) secrets will have to be communicated. This has somewhat ignored the simplification and improvement of protocols which securely transmit a single secret. Such improvements include constructing more efficient protocols with regards to communication complexity, computational complexity and the number of field elements sent throughout the whole protocol. In the thesis we first consider one-phase almost perfectly secure message transmission and present two new protocols which improve on previous work. We present a polynomial time protocol of O(n2) communication complexity which at the time of writing this thesis, is computationally more efficient than any other protocol of similar communication complexity for the almost perfectly secure transmission of a single message. Even though our first almost perfectly secure transmission protocol is of polynomial time, it is important to study other protocols also and improve previous work presented by other researchers. This is the idea behind the second one-phase almost perfectly secure message transmission protocol we present which requires an exponential complexity of field operations but lower (O(n)) communication complexity. This protocol also improves on previous protocols of similar communication complexity, requiring in the order of O(log q) less computation to complete - where q denotes the size of the finite field used. Even though this protocol is of exponential time, for small values of n (e.g. when t = 1, t = 2 or t = 3) it may be beneficial to use this protocol for almost perfectly secure communication as opposed to using the polynomial time protocol. This is because less field elements need to be transmitted over the whole network which connects a sender and a receiver. Furthermore, an optimal almost perfectly secure transmission protocol will be one with O(n) communication complexity and with polynomial computational complexity. We hope that in the future, other researchers will be inspired by our proposed protocol, improve on our work and ideally achieve these optimal results. We also consider multi-phase protocols. By combining various cryptographic schemes, we present a new two-phase perfectly secure single message transmission protocol. At the time of writing this thesis, the protocol is the most efficient protocol when considering communication complexity. Our protocol has a communication complexity of O(n2) compared to O(n3) of previous work thus improving on the communication complexity by an order of O(n) for the perfectly secure message transmission of a single message. This protocol is then extended to a three phase protocol where a multi-recipient broadcast end channel network setting is considered. As opposed to point to point networks where a path from a sender reaches a single receiver, this network model is new in the field of message transmission protocols. In this model each path from a sender reaches multiple receivers, with all receivers receiving the same information from their common network communication channel. We show how the use of this protocol upon such a network can lead to great savings in the transmission and computation carried out by a single sender. We also discuss the importance and relevance of such a multi-recipient setting to practical applications. The first protocols in the field of perfectly secure message transmission with a human receiver are also presented. This is a topic proposed by my supervisor Professor Yvo Desmedt for which I constructed solutions. In such protocols, one of the communicating parties is considered to be a human who does not have access to a computational device. Because of this, solutions for such protocols need to be computationally efficient and computationally simple so that they can be executed by the human party. Experiments with human participants were carried out to assess how easily and accurately human parties used the proposed protocols. The experimental results are presented and these identify how well human participants used the protocols. In addition to the security of messages, we also consider how one can achieve anonymity of message transmission protocols. For such protocols, considering a single-receiver multi-sender scenario, the presence of a t-threshold bounded adversary and the transmission of multiple secrets (as many as the number of sender), once the protocols ends one should not be able to identify the sender of a received message. Considering a passive and active adversary new protocols are presented which achieve the secure and anonymous transmission of messages in the information-theoretic security model. Our proposed solutions can also be applied (with minor alterations) to the dual problem when a single-sender multi-recipient communication setting is considered. The contributions of the thesis are primarily theoretical - thus no implementation of the proposed protocols was carried out. Despite this, we reflect on practical aspects of secure message transmission protocols. We review the feasibility of implementing secure message transmission protocols in general upon various networks - focusing on the Internet which can be considered as the most important communication network at this time. We also describe in theory how concepts of secure message transmission protocols could possibly be used in practical implementations for secure communication on various existing communication networks. Open problems that remain unsolved in the research area of the proposed protocols are also discussed and we hope that these inspire research and future solutions for the design (and implementation) of better and more efficient secure message transmission protocols

    An architecture for secure data management in medical research and aided diagnosis

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e as Comunicacións. 5032V01[Resumo] O Regulamento Xeral de Proteccion de Datos (GDPR) implantouse o 25 de maio de 2018 e considerase o desenvolvemento mais importante na regulacion da privacidade de datos dos ultimos 20 anos. As multas fortes definense por violar esas regras e non e algo que os centros sanitarios poidan permitirse ignorar. O obxectivo principal desta tese e estudar e proponer unha capa segura/integracion para os curadores de datos sanitarios, onde: a conectividade entre sistemas illados (localizacions), a unificacion de rexistros nunha vision centrada no paciente e a comparticion de datos coa aprobacion do consentimento sexan as pedras angulares de a arquitectura controlar a sua identidade, os perfis de privacidade e as subvencions de acceso. Ten como obxectivo minimizar o medo a responsabilidade legal ao compartir os rexistros medicos mediante o uso da anonimizacion e facendo que os pacientes sexan responsables de protexer os seus propios rexistros medicos, pero preservando a calidade do tratamento do paciente. A nosa hipotese principal e: os conceptos Distributed Ledger e Self-Sovereign Identity son unha simbiose natural para resolver os retos do GDPR no contexto da saude? Requirense solucions para que os medicos e investigadores poidan manter os seus fluxos de traballo de colaboracion sen comprometer as regulacions. A arquitectura proposta logra eses obxectivos nun ambiente descentralizado adoptando perfis de privacidade de datos illados.[Resumen] El Reglamento General de Proteccion de Datos (GDPR) se implemento el 25 de mayo de 2018 y se considera el desarrollo mas importante en la regulacion de privacidad de datos en los ultimos 20 anos. Las fuertes multas estan definidas por violar esas reglas y no es algo que los centros de salud puedan darse el lujo de ignorar. El objetivo principal de esta tesis es estudiar y proponer una capa segura/de integración para curadores de datos de atencion medica, donde: la conectividad entre sistemas aislados (ubicaciones), la unificacion de registros en una vista centrada en el paciente y el intercambio de datos con la aprobacion del consentimiento son los pilares de la arquitectura propuesta. Esta propuesta otorga al titular de los datos un rol central, que le permite controlar su identidad, perfiles de privacidad y permisos de acceso. Su objetivo es minimizar el temor a la responsabilidad legal al compartir registros medicos utilizando el anonimato y haciendo que los pacientes sean responsables de proteger sus propios registros medicos, preservando al mismo tiempo la calidad del tratamiento del paciente. Nuestra hipotesis principal es: .son los conceptos de libro mayor distribuido e identidad autosuficiente una simbiosis natural para resolver los desafios del RGPD en el contexto de la atencion medica? Se requieren soluciones para que los medicos y los investigadores puedan mantener sus flujos de trabajo de colaboracion sin comprometer las regulaciones. La arquitectura propuesta logra esos objetivos en un entorno descentralizado mediante la adopcion de perfiles de privacidad de datos aislados.[Abstract] The General Data Protection Regulation (GDPR) was implemented on 25 May 2018 and is considered the most important development in data privacy regulation in the last 20 years. Heavy fines are defined for violating those rules and is not something that healthcare centers can afford to ignore. The main goal of this thesis is to study and propose a secure/integration layer for healthcare data curators, where: connectivity between isolated systems (locations), unification of records in a patientcentric view and data sharing with consent approval are the cornerstones of the proposed architecture. This proposal empowers the data subject with a central role, which allows to control their identity, privacy profiles and access grants. It aims to minimize the fear of legal liability when sharing medical records by using anonymisation and making patients responsible for securing their own medical records, yet preserving the patient’s quality of treatment. Our main hypothesis is: are the Distributed Ledger and Self-Sovereign Identity concepts a natural symbiosis to solve the GDPR challenges in the context of healthcare? Solutions are required so that clinicians and researchers can maintain their collaboration workflows without compromising regulations. The proposed architecture accomplishes those objectives in a decentralized environment by adopting isolated data privacy profiles

    Secure Cloud Storage

    Get PDF
    The rapid growth of Cloud based services on the Internet invited many critical security attacks. Consumers and corporations who use the Cloud to store their data encounter a difficult trade-off of accepting and bearing the security, reliability, and privacy risks as well as costs in order to reap the benefits of Cloud storage. The primary goal of this thesis is to resolve this trade-off while minimizing total costs. This thesis presents a system framework that solves this problem by using erasure codes to add redundancy and security to users’ data, and by optimally choosing Cloud storage providers to minimize risks and total storage costs. Detailed comparative analysis of the security and algorithmic properties of 7 different erasure codes is presented, showing codes with better data security comes with a higher cost in computational time complexity. The codes which granted the highest configuration flexibility bested their peers, as the flexibility directly corresponded to the level of customizability for data security and storage costs. In-depth analysis of the risks, benefits, and costs of Cloud storage is presented, and analyzed to provide cost-based and security-based optimal selection criteria for choosing appropriate Cloud storage providers. A brief historical introduction to Cloud Computing and security principles is provided as well for those unfamiliar with the field. The analysis results show that the framework can resolve the trade-off problem by mitigating and eliminating the risks while preserving and enhancing the benefits of using Cloud storage. However, it requires higher total storage space due to the redundancy added by the erasure codes. The storage provider selection criteria will minimize the total storage costs even with the added redundancies, and minimize risks

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality
    • …
    corecore