90 research outputs found

    Single-shot layered reflectance separation using a polarized light field camera

    Get PDF
    We present a novel computational photography technique for single shot separation of diffuse/specular reflectance as well as novel angular domain separation of layered reflectance. Our solution consists of a two-way polarized light field (TPLF) camera which simultaneously captures two orthogonal states of polarization. A single photograph of a subject acquired with the TPLF camera under polarized illumination then enables standard separation of diffuse (depolarizing) and polarization preserving specular reflectance using light field sampling. We further demonstrate that the acquired data also enables novel angular separation of layered reflectance including separation of specular reflectance and single scattering in the polarization preserving component, and separation of shallow scattering from deep scattering in the depolarizing component. We apply our approach for efficient acquisition of facial reflectance including diffuse and specular normal maps, and novel separation of photometric normals into layered reflectance normals for layered facial renderings. We demonstrate our proposed single shot layered reflectance separation to be comparable to an existing multi-shot technique that relies on structured lighting while achieving separation results under a variety of illumination conditions

    Capturing and Reconstructing the Appearance of Complex {3D} Scenes

    No full text
    In this thesis, we present our research on new acquisition methods for reflectance properties of real-world objects. Specifically, we first show a method for acquiring spatially varying densities in volumes of translucent, gaseous material with just a single image. This makes the method applicable to constantly changing phenomena like smoke without the use of high-speed camera equipment. Furthermore, we investigated how two well known techniques -- synthetic aperture confocal imaging and algorithmic descattering -- can be combined to help looking through a translucent medium like fog or murky water. We show that the depth at which we can still see an object embedded in the scattering medium is increased. In a related publication, we show how polarization and descattering based on phase-shifting can be combined for efficient 3D~scanning of translucent objects. Normally, subsurface scattering hinders the range estimation by offsetting the peak intensity beneath the surface away from the point of incidence. With our method, the subsurface scattering is reduced to a minimum and therefore reliable 3D~scanning is made possible. Finally, we present a system which recovers surface geometry, reflectance properties of opaque objects, and prevailing lighting conditions at the time of image capture from just a small number of input photographs. While there exist previous approaches to recover reflectance properties, our system is the first to work on images taken under almost arbitrary, changing lighting conditions. This enables us to use images we took from a community photo collection website

    Automated three-axis gonioreflectometer for computer graphics applications

    Get PDF
    We describe an automated three-axis BRDF measurement instrument that can help increase the physical realism of computer graphics images by providing light scattering data for the surfaces within a synthetic scene that is to be rendered. To our knowledge, the instrument is unique in combining wide angular coverage (beyond 85 Ā° from the surface normal), dense sampling of the visible wavelength spectrum (1024 samples), and rapid operation (less than ten hours for complete measurement of an isotropic sample). The gonioreflectometer employs a broadband light source and a detector with a diffraction grating and linear diode array. Validation was achieved by comparisons against reference surfaces and other instruments. The accuracy and spectral and angular ranges of the BRDFs are appropriate for computer graphics imagery, while reciprocity and energy conservation are preserved. Measured BRDFs on rough aluminum, metallic silver automotive paint, and a glossy yellow paint are reported, and an example rendered automotive image is included

    The Impact of Surface Normals on Appearance

    Get PDF
    The appearance of an object is the result of complex light interaction with the object. Beyond the basic interplay between incident light and the object\u27s material, a multitude of physical events occur between this illumination and the microgeometry at the point of incidence, and also beneath the surface. A given object, made as smooth and opaque as possible, will have a completely different appearance if either one of these attributes - amount of surface mesostructure (small-scale surface orientation) or translucency - is altered. Indeed, while they are not always readily perceptible, the small-scale features of an object are as important to its appearance as its material properties. Moreover, surface mesostructure and translucency are inextricably linked in an overall effect on appearance. In this dissertation, we present several studies examining the importance of surface mesostructure (small-scale surface orientation) and translucency on an object\u27s appearance. First, we present an empirical study that establishes how poorly a mesostructure estimation technique can perform when translucent objects are used as input. We investigate the two major factors in determining an object\u27s translucency: mean free path and scattering albedo. We exhaustively vary the settings of these parameters within realistic bounds, examining the subsequent blurring effect on the output of a common shape estimation technique, photometric stereo. Based on our findings, we identify a dramatic effect that the input of a translucent material has on the quality of the resultant estimated mesostructure. In the next project, we discuss an optimization technique for both refining estimated surface orientation of translucent objects and determining the reflectance characteristics of the underlying material. For a globally planar object, we use simulation and real measurements to show that the blurring effect on normals that was observed in the previous study can be recovered. The key to this is the observation that the normalization factor for recovered normals is proportional to the error on the accuracy of the blur kernel created from estimated translucency parameters. Finally, we frame the study of the impact of surface normals in a practical, image-based context. We discuss our low-overhead, editing tool for natural images that enables the user to edit surface mesostructure while the system automatically updates the appearance in the natural image. Because a single photograph captures an instant of the incredibly complex interaction of light and an object, there is a wealth of information to extract from a photograph. Given a photograph of an object in natural lighting, we allow mesostructure edits and infer any missing reflectance information in a realistically plausible way

    Sparse ellipsometry: portable acquisition of polarimetric SVBRDF and shape with unstructured flash photography

    Get PDF
    Ellipsometry techniques allow to measure polarization information of materials, requiring precise rotations of optical components with different configurations of lights and sensors. This results in cumbersome capture devices, carefully calibrated in lab conditions, and in very long acquisition times, usually in the order of a few days per object. Recent techniques allow to capture polarimetric spatially-varying reflectance information, but limited to a single view, or to cover all view directions, but limited to spherical objects made of a single homogeneous material. We present sparse ellipsometry, a portable polarimetric acquisition method that captures both polarimetric SVBRDF and 3D shape simultaneously. Our handheld device consists of off-the-shelf, fixed optical components. Instead of days, the total acquisition time varies between twenty and thirty minutes per object. We develop a complete polarimetric SVBRDF model that includes diffuse and specular components, as well as single scattering, and devise a novel polarimetric inverse rendering algorithm with data augmentation of specular reflection samples via generative modeling. Our results show a strong agreement with a recent ground-truth dataset of captured polarimetric BRDFs of real-world objects

    Polarization imaging reflectometry in the wild

    Get PDF
    We present a novel approach for on-site acquisition of surface reflectance for planar, spatially varying, isotropic materials in uncontrolled outdoor environments. Our method exploits the naturally occuring linear polarization of incident illumination: by rotating a linear polarizing filter in front of a camera at 3 different orientations, we measure the linear polarization reflected off the sample and combine this information with multiview analysis and inverse rendering in order to recover per-pixel, high resolution reflectance maps. We exploit polarization both for diffuse/specular separation and surface normals estimation by combining polarization measurements from at least two near orthogonal views close to Brewster angle of incidence. We then use our estimates of surface normals and albedos in an inverse rendering framework to recover specular roughness. To the best of our knowledge, our method is the first to successfully extract a complete set of reflectance parameters with passive capture in completely uncontrolled outdoor environments

    Circularly polarized spherical illumination reflectometry

    Get PDF

    Facial Age Analysis using an Absorptive Rough Laminar Light Scattering Model

    Get PDF
    Facial aging research concerns the way aging aļ¬€ects a personā€™s appearance and how we can use knowledge of this process. It has been an interesting topic for ļ¬elds such as human perception, pattern recognition, computer vision, graphics, and skin optics. Most studies acknowledge that facial appearance changes with age. As a person grows older, certain characteristics of their skin will change, notably the light scattering. If a model is used to predict a personā€™s skin light scattering, its parameter(s) may be used to predict the age of its owner. The aim of this thesis is to observe whether a light scattering model parameter is suitable to be used as an age estimator/classiļ¬er. This is done by investigating and analyzing the relationship between the parameter of an analytical-based light scattering model and skins of various ages. In the end, this thesis has shown that the parameter(s) for an analytical-based light scattering model can be used as an alternative method for estimating/classifying a personā€™s age
    • ā€¦
    corecore