1,094 research outputs found

    Flux Weakening Strategy Optimization for Five-Phase PM Machine with Concentrated Windings

    Get PDF
    The paper applies an Efficient Global Optimization method (EGO) to improve the efficiency, in flux weakening region, of a given 5-phase Permanent Magnet (PM) machine. An optimal control for the four independent currents is thus defined. Moreover, a modification proposal of the machine geometry is added to the optimization process of the global drive. The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region. But these losses, which highly depend on magnetic state of the machine, must be calculated by Finite Element Method (FEM) to be accurate. The FEM has the drawback to be time consuming. It is why a direct optimization using FEM is critical. EGO method, using sparingly FEM, allows to find a feasible solution to this hard optimization problem of control and design of multi-phase drive

    Comparison and Design Optimization of a Five-Phase Flux-Switching PM Machine for In-Wheel Traction Applications

    Get PDF
    A comparative study of five-phase outer-rotor flux-switching permanent magnet (FSPM) machines with different topologies for in-wheel traction applications is presented in this paper. Those topologies include double-layer winding, single-layer winding, C-core, and E-core configurations. The electromagnetic performance in the low-speed region, the flux-weakening capability in the high-speed region, and the fault-tolerance capability are all investigated in detail. The results indicate that the E-core FSPM machine has performance advantages. Furthermore, two kinds of E-core FSPM machines with different stator and rotor pole combinations are optimized, respectively. In order to reduce the computational burden during the large-scale optimization process, a mathematical technique is developed based on the concept of computationally efficient finite-element analysis. While a differential evolution algorithm serves as a global search engine to target optimized designs. Subsequently, multiobjective tradeoffs are presented based on a Pareto-set for 20 000 candidate designs. Finally, an optimal design is prototyped, and some experimental results are given to confirm the validity of the simulation results in this paper

    A SyR and IPM machine design methodology assisted by optimization algorithms

    Get PDF
    The design optimization of synchronous reluctance (SyR) machine and its extension to internal permanent magnet (IPM) motors for wide speed ranges is considered in this paper by means of a Finite Element Analysis-based multi-objective genetic algorithm (MOGA). The paper is focused on the rotor design, that is controversial key aspect of the design of high saliency SyR and IPM machines, due to the difficult modeling dominated by magnetic saturation. A three step procedure is presented, to obtain a starting SyR design with the optimal torque versus torque ripple compromise and then properly include PMs into the SyR geometry, given the desired constant power speed range of the final IPM machine. The designed rotors have been extensively analyzed by computer simulations and two SyR prototypes have been realized to demonstrate the feasibility of the design procedur

    Maximum Torque Per Ampere Control Strategy of a 5-phase PM Generator in healthy and faulty modes for tidal marine turbine application

    Get PDF
    The work presented in this paper aims to propose a control strategy being able to extract efficiently energy from a fixed-pitch marine current turbine associated with a 5–phase Permanent Magnet Synchronous Generator (PMSG) in healthy mode and in faulty mode. The considered faults are opened phases. For each tidal current speed, the control strategy aims to extract the maximum power with respect of the maximum values of currents and voltages related to the converter. The maximum power is directly related to the Maximum Torque per Ampere (MTPA) control strategy characteristics (all the points which are below the MTPA torque VS rotating speed characteristic can be reached by the converter/generator set). This paper proposes a methodology to establish MTPA characteristics and calculate the corresponding current references in healthy mode and in faulty mode (one or two opened phases) for a 5-phase generator. The studied strategy includes flux weakening operations in the both modes.financement CIFRE Jeumont-Electric Altawes

    Study of innovative electric machines for high efficiency vehicular traction applications

    Get PDF
    This thesis collects some of the work accomplished during the PhD research activity focused on the study of special electric machines for vehicle traction applications. The work is divided into due parts. The rst part is mainly technological and covers some studies and experimental activities concerning new technical solutions to solve some common issues in operation of electric motors for automotive use, namely ux weakening and cogging torque. The second part has a more theoretical nature and focuses on some methods for electric machine modeling and analysis which has been developed to facilitate the study and design optimizations carried out during the PhD research work. The chapters in the rst part address the following topics: 1. Development and testing of an interior-permanent-magnet motor prototype fully conceived, designed and manufactured at the University of Trieste to implement a new concept of flux weakening system at high speeds. The concept has been also protected through a pending patent. 2. Multi-objective design optimization of an interior permanent magnet reluctance-assisted synchronous motor for the automotive industry. The design optimization was meant to support an industrial development project which is still in progress so no prototype has been built yet. 3. Study of a new optimized magnetic wedge design capable of reducing cogging torque in automotive propulsion motors having open stator slots. The second part proposes some analytical and numerical results that have been worked out to approach the modeling and optimization of various kinds of permanent magnet synchronous motors. The main problem to which these chapters try to answer is to nd suciently fast but accurate methods for permanent magnet analysis without time-consuming finite-element transient analysis. The proposed methods have been successfully integrated into design optimization programs used in the industrial environment in the development of innovative electric machines not only for the automotive industry

    Direct torque control for dual three-phase induction motor drives

    Get PDF
    A direct torque control (DTC) strategy for dual three-phase induction motor drives is discussed in this paper. The induction machine has two sets of stator three-phase windings spatially shifted by 30 electrical degrees. The DTC strategy is based on a predictive algorithm and is implemented in a synchronous reference frame aligned with the machine stator flux vector. The advantages of the discussed control strategy are constant inverter switching frequency, good transient and steady-state performance, and low distortion of machine currents with respect to direct self-control (DSC) and other DTC schemes with variable switching frequency. Experimental results are presented for a 10-kW DTC dual three-phase induction motor drive prototype

    Torque maximisation of the PMAC motor for high performance, low inertia operation

    Get PDF
    This paper describes the techniques applied to maximise the torque en- velope of the permanent magnet AC (PMAC) motor operating under current and voltage constraints. Standard steady-state descriptions of the system are often suitable for control purposes when the rotor velocity is varying rela- tively slowly. In low inertia applications such as clutchless gearchange opera- tions, where in the pursuit of driveability, the motor is required to accelerate and decelerate its own rotor inertia as quickly as possible. In this case, the voltage drop due to the current dynamics start to become significant. This paper presents a method to reserve voltage headroom dynamically in the field-weakening region in order to maximise the torque envelope when the effective inertia is low. Experimental results show the effectiveness of this approach

    Magnetic noise reduction of in-wheel permanent magnet synchronous motors for light-duty electric vehicles

    Get PDF
    This paper presents study of a multi-slice subdomain model (MS-SDM) for persistent low-frequency sound, in a wheel hub-mounted permanent magnet synchronous motor (WHM-PMSM) with a fractional-slot non-overlapping concentrated winding for a light-duty, fully electric vehicle applications. While this type of winding provides numerous potential benefits, it has also the largest magnetomotive force (MMF) distortion factor, which leads to the electro-vibro-acoustics production, unless additional machine design considerations are carried out. To minimize the magnetic noise level radiated by the PMSM, a skewing technique is targeted with consideration of the natural frequencies under a variable-speed-range analysis. To ensure the impact of the minimization technique used, magnetic force harmonics, along with acoustic sonograms, is computed by MS-SDM and verified by 3D finite element analysis. On the basis of the studied models, we derived and experimentally verified the optimized model with 5 dBA reduction in A-weighted sound power level by due to the choice of skew angle. In addition, we investigated whether or not the skewing slice number can be of importance on the vibro-acoustic objectives in the studied WHM-PMSM.Postprint (published version

    FEA-based multi-objective optimization of IPM motor design including rotor losses

    Get PDF
    The design optimization of IPM motors for wide speed ranges is considered in this paper by means of a FEAbased multi-objective genetic algorithm (MOGA). The minimum number of simulations is pursued for the fast evaluation of four goal functions: maximum torque, minimum torque ripple, maximum flux weakening capability and minimum rotor harmonic losses. The paper is focused on the rotor design, that is the most controversial aspect of IPM design due to the difficult modeling dominated by magnetic saturation. Three original results are presented: the elimination of higher order torque ripple harmonics and the minimization of FEA evaluations by means of a random rotor position offset and the evaluation, by means of the same static FEA runs, of the eddy current losses in the rotor core

    Multi-level-objective design optimization of permanent magnet synchronous wind generator and solar photovoltaic system for an urban environment application

    Get PDF
    This Ph.D. thesis illustrates a novel study on the analytical and numerical design optimization of radial-flux permanent magnet synchronous wind generators (PMSGs) for small power generation in an urban area, in which an outer rotor topology with a closed-slot stator is employed. The electromagnetic advantages of a double-layer fractional concentration non-overlapping winding configuration are discussed. The analytical behavior of a PMSG is studied in detail; especially for magnetic flux density distribution, time and space harmonics, flux linkages, back-EMF, cogging torque, torque, output power, efficiency, and iron losses computation. The electromagnetic behavior of PMSGs are evaluated when a number of various Halbach array magnetization topologies are presented to maximize the generator’s performance. In addition, the thermal behavior of the PMSG is improved using an innovative natural air-cooling system for rated speed and higher to decrease the machine’s heat mainly at the stator teeth. The analytical investigation is verified via 2-D and 3-D finite element analysis along with a good experimental agreement. Design optimization of electrical machines plays the deterministic role in performance improvements such as the magnetization pattern, output power, and efficiency maximization, as well as losses and material cost minimization. This dissertation proposes a novel multi-objective design optimization technique using a dual-level response surface methodology (D-RSM) and Booth’s algorithm (coupled to a memetic algorithm known as simulated annealing) to maximize the output power and minimize material cost through sizing optimization. Additionally, the efficiency maximization by D-RSM is investigated while the PMSG and drive system are on duty as the whole. It is shown that a better fit is available when utilizing modern design functions such as mixed-resolution central composite (MR-CCD) and mixed-resolution robust (MR-RD), due to controllable and uncontrollable design treatments, and also a Window-Zoom-in approach. The proposed design optimization was verified by an experimental investigation. Additionally, there are several novel studies on vibro-acoustic design optimization of the PMSGs with considering variable speed analysis and natural frequencies using two techniques to minimize the magnetic noise and vibrations. Photovoltaic system design optimization considered of 3-D modeling of an innovative application-oriented urban environment structure, a smart tree for small power generation. The horizon shading is modeled as a broken line superimposed onto the sun path diagram, which can hold any number of height/azimuth points in this original study. The horizon profile is designed for a specific location on the Barcelona coast in Spain and the meteorological data regarding the location of the project was also considered. Furthermore, the input weather data is observed and stored for the whole year (in 2016). These data include, ambient temperature, module’s temperature (open and closed circuits tests), and shading average rate. A novel Pareto-based 3-D analysis was used to identify complete and partial shading of the photovoltaic system. A significant parameter for a photovoltaic (PV) module operation is the nominal operating cell temperature (NOCT). In this research, a glass/glass module has been referenced to the environment based on IEC61215 via a closed-circuit and a resistive load to ensure the module operates at the maximum power point. The proposed technique in this comparative study attempts to minimize the losses in a certain area with improved output energy without compromising the overall efficiency of the system. A Maximum Power Point Track (MPPT) controller is enhanced by utilizing an advanced perturb & observe (P&O) algorithm to maintain the PV operating point at its maximum output under different temperatures and insolation. The most cost-effective design of the PV module is achieved via optimizing installation parameters such as tilt angle, pitch, and shading to improve the energy yield. The variation of un-replicated factorials using a Window-Zoom-in approach is examined to determine the parameter settings and to check the suitability of the design. An experimental investigation was carried out to verify the 3-D shading analysis and NOCT technique for an open-circuit and grid-connected PV module.Esta tesis muestra un novedoso estudio referente al diseño optimizado de forma analítica y numérica de un generador síncrono de imanes permanentes (PMSGs) para una aplicación de microgeneración eólica en un entorno urbano, donde se ha escogido una topología de rotor exterior con un estator de ranuras cerradas. Las ventajas electromagnéticas de los arrollamientos fraccionarios de doble capa, con bobinas concentradas se discuten ampliamente en la parte inicial del diseño del mismo, así como las características de distribución de la inducción, los armónicos espaciales y temporales, la fem generada, el par de cogging así como las características de salida (par, potencia generada, la eficiencia y la distribución y cálculo de las pérdidas en el hierro que son analizadas detalladamente) Posteriormente se evalúan diferentes configuraciones de estructuras de imanes con magnetización Halbach con el fin de maximizar las prestaciones del generador. Adicionalmente se analiza la distribución de temperaturas y su mejora mediante el uso de un novedoso diseño mediante el uso de ventilación natural para velocidades próximas a la nominal y superiores con el fin de disminuir la temperatura de la máquina, principalmente en el diente estatórico. El cálculo analítico se completa mediante simulaciones 2D y 3D utilizando el método de los elementos finitos así como mediante diversas experiencias que validan los modelos y aproximaciones realizadas. Posteriormente se desarrollan algoritmos de optimización aplicados a variables tales como el tipo de magnetización, la potencia de salida, la eficiencia así como la minimización de las pérdidas y el coste de los materiales empleados. En la tesis se proponen un nuevo diseño optimizado basado en una metodología multinivel usando la metodología de superficie de respuesta (D-RSM) y un algoritmo de Booth (maximizando la potencia de salida y minimizando el coste de material empleado) Adicionalmente se investiga la maximización de la eficiencia del generador trabajando conjuntamente con el circuito de salida acoplado. El algoritmo utilizado queda validado mediante la experimentación desarrollada conjuntamente con el mismo. Adicionalmente, se han realizado diversos estudios vibroacústicos trabajando a velocidad variable usando dos técnicas diferentes para reducir el ruido generado y las vibraciones producidas. Posteriormente se considera un sistema fotovoltaico orientado a aplicaciones urbanas que hemos llamado “Smart tree for small power generation” y que consiste en un poste con un generador eólico en la parte superior juntamente con uno o más paneles fotovoltaicos. Este sistema se ha modelado usando metodologías en 3D. Se ha considerado el efecto de las sombras proyectadas por los diversos elementos usando datos meteorológicos y de irradiación solar de la propia ciudad de Barcelona. Usando una metodología basada en un análisis 3D y Pareto se consigue identificar completamente el sistema fotovoltaico; para este sistema se considera la temperatura de la célula fotovoltaica y la carga conectada con el fin de generar un algoritmo de control que permita obtener el punto de trabajo de máxima potencia (MPPT) comprobándose posteriormente el funcionamiento del algoritmo para diversas situaciones de funcionamiento del sistemaLa tesis desenvolupa un nou estudi per al disseny optimitzat, analític i numèric, d’un generador síncron d’imants permanents (PMSGs) per a una aplicació de microgeneració eòlica en aplicacions urbanes, on s’ha escollit una configuració amb rotor exterior i estator amb ranures tancades. Es discuteixen de forma extensa els avantatges electromagnètics dels bobinats fraccionaris de doble capa així com les característiques resultats vers la distribució de les induccions, els harmònics espacials i temporals, la fem generada, el parell de cogging i les característiques de sortida (parell, potencia, eficiència i pèrdues) Tanmateix s’afegeix l’estudi de diferents estructures Halbach per als imants permanents a fi i efecte de maximitzar les característiques del generador. Tot seguit s’analitza la distribució de temperatures i la seva reducció mitjançant la utilització d’una nova metodologia basada en la ventilació natural. Els càlculs analítics es complementen mitjançant anàlisi en 2 i 3 dimensions utilitzant elements finits i diverses experiències que validen els models i aproximacions emprades. Una vegada fixada la geometria inicial es desenvolupen algoritmes d’optimització per a diverses variables (tipus de magnetització dels imants, potencia de sortida, eficiència, minimització de pèrdues i cost dels materials) La tesi planteja una optimització multinivell emprant la metodologia de superfície de resposta i un algoritme de Booth; a més, es realitza la optimització considerant el circuit de sortida. L’algoritme resta validat per la experimentació realitzada. Finalment, s’han considerat diversos estudis vibroacústic treballant a velocitat variable, emprant dues tècniques diferents per a reduir el soroll i les vibracions desenvolupades. Per a finalitzar l’estudi es considera un sistema format per una turbina eòlica instal·lada sobre un pal de llum autònom, els panells fotovoltaics corresponents i el sistema de càrrega. Per a modelitzar l’efecte de l’ombrejat s’ha emprat un model en 3D i les dades del temps i d’irradiació solar de la ciutat de Barcelona. El model s’ha identificat completament i s’ha generat un algoritme de control que considera, a més, l’efecte de la temperatura de la cèl·lula fotovoltaica y la càrrega connectada al sistema per tal d’aconseguir el seguiment del punt de màxima potenciaPostprint (published version
    corecore