7,294 research outputs found

    Quadratic Zonotopes:An extension of Zonotopes to Quadratic Arithmetics

    Full text link
    Affine forms are a common way to represent convex sets of R\mathbb{R} using a base of error terms ϵ[1,1]m\epsilon \in [-1, 1]^m. Quadratic forms are an extension of affine forms enabling the use of quadratic error terms ϵiϵj\epsilon_i \epsilon_j. In static analysis, the zonotope domain, a relational abstract domain based on affine forms has been used in a wide set of settings, e.g. set-based simulation for hybrid systems, or floating point analysis, providing relational abstraction of functions with a cost linear in the number of errors terms. In this paper, we propose a quadratic version of zonotopes. We also present a new algorithm based on semi-definite programming to project a quadratic zonotope, and therefore quadratic forms, to intervals. All presented material has been implemented and applied on representative examples.Comment: 17 pages, 5 figures, 1 tabl

    A robust error estimator and a residual-free error indicator for reduced basis methods

    Full text link
    The Reduced Basis Method (RBM) is a rigorous model reduction approach for solving parametrized partial differential equations. It identifies a low-dimensional subspace for approximation of the parametric solution manifold that is embedded in high-dimensional space. A reduced order model is subsequently constructed in this subspace. RBM relies on residual-based error indicators or {\em a posteriori} error bounds to guide construction of the reduced solution subspace, to serve as a stopping criteria, and to certify the resulting surrogate solutions. Unfortunately, it is well-known that the standard algorithm for residual norm computation suffers from premature stagnation at the level of the square root of machine precision. In this paper, we develop two alternatives to the standard offline phase of reduced basis algorithms. First, we design a robust strategy for computation of residual error indicators that allows RBM algorithms to enrich the solution subspace with accuracy beyond root machine precision. Secondly, we propose a new error indicator based on the Lebesgue function in interpolation theory. This error indicator does not require computation of residual norms, and instead only requires the ability to compute the RBM solution. This residual-free indicator is rigorous in that it bounds the error committed by the RBM approximation, but up to an uncomputable multiplicative constant. Because of this, the residual-free indicator is effective in choosing snapshots during the offline RBM phase, but cannot currently be used to certify error that the approximation commits. However, it circumvents the need for \textit{a posteriori} analysis of numerical methods, and therefore can be effective on problems where such a rigorous estimate is hard to derive

    Efficient Solving of Quantified Inequality Constraints over the Real Numbers

    Full text link
    Let a quantified inequality constraint over the reals be a formula in the first-order predicate language over the structure of the real numbers, where the allowed predicate symbols are \leq and <<. Solving such constraints is an undecidable problem when allowing function symbols such sin\sin or cos\cos. In the paper we give an algorithm that terminates with a solution for all, except for very special, pathological inputs. We ensure the practical efficiency of this algorithm by employing constraint programming techniques

    On Sound Relative Error Bounds for Floating-Point Arithmetic

    Full text link
    State-of-the-art static analysis tools for verifying finite-precision code compute worst-case absolute error bounds on numerical errors. These are, however, often not a good estimate of accuracy as they do not take into account the magnitude of the computed values. Relative errors, which compute errors relative to the value's magnitude, are thus preferable. While today's tools do report relative error bounds, these are merely computed via absolute errors and thus not necessarily tight or more informative. Furthermore, whenever the computed value is close to zero on part of the domain, the tools do not report any relative error estimate at all. Surprisingly, the quality of relative error bounds computed by today's tools has not been systematically studied or reported to date. In this paper, we investigate how state-of-the-art static techniques for computing sound absolute error bounds can be used, extended and combined for the computation of relative errors. Our experiments on a standard benchmark set show that computing relative errors directly, as opposed to via absolute errors, is often beneficial and can provide error estimates up to six orders of magnitude tighter, i.e. more accurate. We also show that interval subdivision, another commonly used technique to reduce over-approximations, has less benefit when computing relative errors directly, but it can help to alleviate the effects of the inherent issue of relative error estimates close to zero
    corecore