58,716 research outputs found

    Global Structure of Curves from Generalized Unitarity Cut of Three-loop Diagrams

    Get PDF
    This paper studies the global structure of algebraic curves defined by generalized unitarity cut of four-dimensional three-loop diagrams with eleven propagators. The global structure is a topological invariant that is characterized by the geometric genus of the algebraic curve. We use the Riemann-Hurwitz formula to compute the geometric genus of algebraic curves with the help of techniques involving convex hull polytopes and numerical algebraic geometry. Some interesting properties of genus for arbitrary loop orders are also explored where computing the genus serves as an initial step for integral or integrand reduction of three-loop amplitudes via an algebraic geometric approach.Comment: 35pages, 10 figures, version appeared in JHE

    Integrable quadratic Hamiltonians on so(4) and so(3,1)

    Full text link
    We investigate a special class of quadratic Hamiltonians on so(4) and so(3,1) and describe Hamiltonians that have additional polynomial integrals. One of the main results is a new integrable case with an integral of sixth degree.Comment: 16 page

    Driven cofactor systems and Hamilton-Jacobi separability

    Full text link
    This is a continuation of the work initiated in a previous paper on so-called driven cofactor systems, which are partially decoupling second-order differential equations of a special kind. The main purpose in that paper was to obtain an intrinsic, geometrical characterization of such systems, and to explain the basic underlying concepts in a brief note. In the present paper we address the more intricate part of the theory. It involves in the first place understanding all details of an algorithmic construction of quadratic integrals and their involutivity. It secondly requires explaining the subtle way in which suitably constructed canonical transformations reduce the Hamilton-Jacobi problem of the (a priori time-dependent) driven part of the system into that of an equivalent autonomous system of St\"ackel type

    Jacobian elliptic Kummer surfaces and special function identities

    Full text link
    We derive formulas for the construction of all inequivalent Jacobian elliptic fibrations on the Kummer surface of two non-isogeneous elliptic curves from extremal rational elliptic surfaces by rational base transformations and quadratic twists. We then show that each such decomposition yields a description of the Picard-Fuchs system satisfied by the periods of the holomorphic two-form as either a tensor product of two Gauss' hypergeometric differential equations, an Appell hypergeometric system, or a GKZ differential system. As the answer must be independent of the fibration used, identities relating differential systems are obtained. They include a new identity relating Appell's hypergeometric system to a product of two Gauss' hypergeometric differential equations by a cubic transformation.Comment: 20 page

    Asymptotics of work distributions in a stochastically driven system

    Full text link
    We determine the asymptotic forms of work distributions at arbitrary times TT, in a class of driven stochastic systems using a theory developed by Engel and Nickelsen (EN theory) (arXiv:1102.4505v1 [cond-mat.stat-mech]), which is based on the contraction principle of large deviation theory. In this paper, we extend the theory, previously applied in the context of deterministically driven systems, to a model in which the driving is stochastic. The models we study are described by overdamped Langevin equations and the work distributions in the path integral form, are characterised by having quadratic actions. We first illustrate EN theory, for a deterministically driven system - the breathing parabola model, and show that within its framework, the Crooks flucutation theorem manifests itself as a reflection symmetry property of a certain characteristic polynomial function. We then extend our analysis to a stochastically driven system, studied in ( arXiv:1212.0704v2 [cond-mat.stat-mech], arXiv:1402.5777v1 [cond-mat.stat-mech]) using a moment-generating-function method, for both equilibrium and non - equilibrium steady state initial distributions. In both cases we obtain new analytic solutions for the asymptotic forms of (dissipated) work distributions at arbitrary TT. For dissipated work in the steady state, we compare the large TT asymptotic behaviour of our solution to that already obtained in ( arXiv:1402.5777v1 [cond-mat.stat-mech]). In all cases, special emphasis is placed on the computation of the pre-exponential factor and the results show excellent agreement with the numerical simulations. Our solutions are exact in the low noise limit.Comment: 26 pages, 8 figures. Changes from version 1: Several typos and equations corrected, references added, pictures modified. Version to appear in EPJ

    Partial differential systems with nonlocal nonlinearities: Generation and solutions

    Get PDF
    We develop a method for generating solutions to large classes of evolutionary partial differential systems with nonlocal nonlinearities. For arbitrary initial data, the solutions are generated from the corresponding linearized equations. The key is a Fredholm integral equation relating the linearized flow to an auxiliary linear flow. It is analogous to the Marchenko integral equation in integrable systems. We show explicitly how this can be achieved through several examples including reaction-diffusion systems with nonlocal quadratic nonlinearities and the nonlinear Schrodinger equation with a nonlocal cubic nonlinearity. In each case we demonstrate our approach with numerical simulations. We discuss the effectiveness of our approach and how it might be extended.Comment: 4 figure

    Algorithms for Combinatorial Systems: Well-Founded Systems and Newton Iterations

    Get PDF
    We consider systems of recursively defined combinatorial structures. We give algorithms checking that these systems are well founded, computing generating series and providing numerical values. Our framework is an articulation of the constructible classes of Flajolet and Sedgewick with Joyal's species theory. We extend the implicit species theorem to structures of size zero. A quadratic iterative Newton method is shown to solve well-founded systems combinatorially. From there, truncations of the corresponding generating series are obtained in quasi-optimal complexity. This iteration transfers to a numerical scheme that converges unconditionally to the values of the generating series inside their disk of convergence. These results provide important subroutines in random generation. Finally, the approach is extended to combinatorial differential systems.Comment: 61 page

    On the Complexity of Solving Quadratic Boolean Systems

    Full text link
    A fundamental problem in computer science is to find all the common zeroes of mm quadratic polynomials in nn unknowns over F2\mathbb{F}_2. The cryptanalysis of several modern ciphers reduces to this problem. Up to now, the best complexity bound was reached by an exhaustive search in 4log2n2n4\log_2 n\,2^n operations. We give an algorithm that reduces the problem to a combination of exhaustive search and sparse linear algebra. This algorithm has several variants depending on the method used for the linear algebra step. Under precise algebraic assumptions on the input system, we show that the deterministic variant of our algorithm has complexity bounded by O(20.841n)O(2^{0.841n}) when m=nm=n, while a probabilistic variant of the Las Vegas type has expected complexity O(20.792n)O(2^{0.792n}). Experiments on random systems show that the algebraic assumptions are satisfied with probability very close to~1. We also give a rough estimate for the actual threshold between our method and exhaustive search, which is as low as~200, and thus very relevant for cryptographic applications.Comment: 25 page
    corecore