2,879 research outputs found

    Lectures on Nehari's Theorem on the Polydisk

    Full text link
    We give a leisurely proof of a result of Ferguson--Lacey (math.CA/0104144) and Lacey--Terwelleger (math.CA/0601192) on a Nehari theorem for "little" Hankel operators on a polydisk. If H_b is a little Hankel operator with symbol b on product Hardy space we have || H_b || \simeq || b ||_{BMO} where BMO is the product BMO space identified by Chang and Fefferman. This article begins with the classical Nehari theorem, and presents the necessary background for the proof of the extension above. The proof of the extension is an induction on parameters, with a bootstrapping argument. Some of the more technical details of the earlier proofs are now seen as consequences of a paraproduct theory.Comment: 35 pages. 65 Reference

    Wavelets and Fast Numerical Algorithms

    Full text link
    Wavelet based algorithms in numerical analysis are similar to other transform methods in that vectors and operators are expanded into a basis and the computations take place in this new system of coordinates. However, due to the recursive definition of wavelets, their controllable localization in both space and wave number (time and frequency) domains, and the vanishing moments property, wavelet based algorithms exhibit new and important properties. For example, the multiresolution structure of the wavelet expansions brings about an efficient organization of transformations on a given scale and of interactions between different neighbouring scales. Moreover, wide classes of operators which naively would require a full (dense) matrix for their numerical description, have sparse representations in wavelet bases. For these operators sparse representations lead to fast numerical algorithms, and thus address a critical numerical issue. We note that wavelet based algorithms provide a systematic generalization of the Fast Multipole Method (FMM) and its descendents. These topics will be the subject of the lecture. Starting from the notion of multiresolution analysis, we will consider the so-called non-standard form (which achieves decoupling among the scales) and the associated fast numerical algorithms. Examples of non-standard forms of several basic operators (e.g. derivatives) will be computed explicitly.Comment: 32 pages, uuencoded tar-compressed LaTeX file. Uses epsf.sty (see `macros'

    Martingales, endomorphisms, and covariant systems of operators in Hilbert space

    Full text link
    We show that a class of dynamical systems induces an associated operator system in Hilbert space. The dynamical systems are defined from a fixed finite-to-one mapping in a compact metric space, and the induced operators form a covariant system in a Hilbert space of L^2-martingales. Our martingale construction depends on a prescribed set of transition probabilities, given by a non-negative function. Our main theorem describes the induced martingale systems completely. The applications of our theorem include wavelets, the dynamics defined by iterations of rational functions, and sub-shifts in symbolic dynamics. In the theory of wavelets, in the study of subshifts, in the analysis of Julia sets of rational maps of a complex variable, and, more generally, in the study of dynamical systems, we are faced with the problem of building a unitary operator from a mapping r in a compact metric space X. The space X may be a torus, or the state space of subshift dynamical systems, or a Julia set. While our motivation derives from some wavelet problems, we have in mind other applications as well; and the issues involving covariant operator systems may be of independent interest.Comment: 44 pages, LaTeX2e ("jotart" document class); v2: A few opening paragraphs were added to the paper; an addition where a bit of the history is explained, and where some more relevant papers are cited. Corrected a typographical error in Proposition 8.1. v3: A few minor additions: More motivation and explanations in the Intro; Remark 3.3 is new; and eleven relevant references/citations are added; v4: corrected and updated bibliography; v5: more bibliography updates and change of LaTeX document clas

    Continuous Curvelet Transform: I. Resolution of the Wavefront Set

    Get PDF
    We discuss a Continuous Curvelet Transform (CCT), a transform f → Γf (a, b, θ) of functions f(x1, x2) on R^2, into a transform domain with continuous scale a > 0, location b ∈ R^2, and orientation θ ∈ [0, 2π). The transform is defined by Γf (a, b, θ) = {f, γabθ} where the inner products project f onto analyzing elements called curvelets γ_(abθ) which are smooth and of rapid decay away from an a by √a rectangle with minor axis pointing in direction θ. We call them curvelets because this anisotropic behavior allows them to ‘track’ the behavior of singularities along curves. They are continuum scale/space/orientation analogs of the discrete frame of curvelets discussed in Candès and Donoho (2002). We use the CCT to analyze several objects having singularities at points, along lines, and along smooth curves. These examples show that for fixed (x0, θ0), Γf (a, x0, θ0) decays rapidly as a → 0 if f is smooth near x0, or if the singularity of f at x0 is oriented in a different direction than θ_0. Generalizing these examples, we state general theorems showing that decay properties of Γf (a, x0, θ0) for fixed (x0, θ0), as a → 0 can precisely identify the wavefront set and the H^m- wavefront set of a distribution. In effect, the wavefront set of a distribution is the closure of the set of (x0, θ0) near which Γf (a, x, θ) is not of rapid decay as a → 0; the H^m-wavefront set is the closure of those points (x0, θ0) where the ‘directional parabolic square function’ S^m(x, θ) = ( ʃ|Γf (a, x, θ)|^2 ^(da) _a^3+^(2m))^(1/2) is not locally integrable. The CCT is closely related to a continuous transform used by Hart Smith in his study of Fourier Integral Operators. Smith’s transform is based on strict affine parabolic scaling of a single mother wavelet, while for the transform we discuss, the generating wavelet changes (slightly) scale by scale. The CCT can also be compared to the FBI (Fourier-Bros-Iagolnitzer) and Wave Packets (Cordoba-Fefferman) transforms. We describe their similarities and differences in resolving the wavefront set

    Fast Isogeometric Boundary Element Method based on Independent Field Approximation

    Full text link
    An isogeometric boundary element method for problems in elasticity is presented, which is based on an independent approximation for the geometry, traction and displacement field. This enables a flexible choice of refinement strategies, permits an efficient evaluation of geometry related information, a mixed collocation scheme which deals with discontinuous tractions along non-smooth boundaries and a significant reduction of the right hand side of the system of equations for common boundary conditions. All these benefits are achieved without any loss of accuracy compared to conventional isogeometric formulations. The system matrices are approximated by means of hierarchical matrices to reduce the computational complexity for large scale analysis. For the required geometrical bisection of the domain, a strategy for the evaluation of bounding boxes containing the supports of NURBS basis functions is presented. The versatility and accuracy of the proposed methodology is demonstrated by convergence studies showing optimal rates and real world examples in two and three dimensions.Comment: 32 pages, 27 figure

    Tensor Numerical Methods in Quantum Chemistry: from Hartree-Fock Energy to Excited States

    Get PDF
    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, led to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(nlog⁡n)O(n\log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n×n×nn\times n\times n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D ``density fitting`` scheme. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excited states, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is related to the recent attempts to develop a tensor-based Hartree-Fock numerical scheme for finite lattice-structured systems, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L×L×LL\times L\times L lattice manifests the linear in LL computational work, O(L)O(L), instead of the usual O(L3log⁡L)O(L^3 \log L) scaling by the Ewald-type approaches
    • …
    corecore