1,633 research outputs found

    XML Schema Clustering with Semantic and Hierarchical Similarity Measures

    Get PDF
    With the growing popularity of XML as the data representation language, collections of the XML data are exploded in numbers. The methods are required to manage and discover the useful information from them for the improved document handling. We present a schema clustering process by organising the heterogeneous XML schemas into various groups. The methodology considers not only the linguistic and the context of the elements but also the hierarchical structural similarity. We support our findings with experiments and analysis

    Behaviour modelling with data obtained from the Internet and contributions to cluster validation

    Get PDF
    [EN]This PhD thesis makes contributions in modelling behaviours found in different types of data acquired from the Internet and in the field of clustering evaluation. Two different types of Internet data were processed, on the one hand, internet traffic with the objective of attack detection and on the other hand, web surfing activity with the objective of web personalization, both data being of sequential nature. To this aim, machine learning techniques were applied, mostly unsupervised techniques. Moreover, contributions were made in cluster evaluation, in order to make easier the selection of the best partition in clustering problems. With regard to network attack detection, first, gureKDDCup database was generated which adds payload data to KDDCup99 connection attributes because it is essential to detect non-flood attacks. Then, by modelling this data a network Intrusion Detection System (nIDS) was proposed where context-independent payload processing was done obtaining satisfying detection rates. In the web mining context web surfing activity was modelled for web personalization. In this context, generic and non-invasive systems to extract knowledge were proposed just using the information stored in webserver log files. Contributions were done in two senses: in problem detection and in link suggestion. In the first application a meaningful list of navigation attributes was proposed for each user session to group and detect different navigation profiles. In the latter, a general and non-invasive link suggestion system was proposed which was evaluated with satisfactory results in a link prediction context. With regard to the analysis of Cluster Validity Indices (CVI), the most extensive CVI comparison found up to a moment was carried out using a partition similarity measure based evaluation methodology. Moreover, we analysed the behaviour of CVIs in a real web mining application with elevated number of clusters in which they tend to be unstable. We proposed a procedure which automatically selects the best partition analysing the slope of different CVI values.[EU]Doktorego-tesi honek internetetik eskuratutako datu mota ezberdinetan aurkitutako portaeren modelugintzan eta multzokatzeen ebaluazioan egiten ditu bere ekarpenak. Zehazki, bi mota ezberdinetako interneteko datuak prozesatu dira: batetik, interneteko trafikoa, erasoak hautemateko helburuarekin; eta bestetik, web nabigazioen jarduera, weba pertsonalizatzeko helburuarekin; bi datu motak izaera sekuentzialekoak direlarik. Helburu hauek lortzeko, ikasketa automatikoko teknikak aplikatu dira, nagusiki gainbegiratu-gabeko teknikak. Testuinguru honetan, multzokatzeen partizio onenaren aukeraketak dakartzan arazoak gutxitzeko multzokatzeen ebaluazioan ere ekarpenak egin dira. Sareko erasoen hautemateari dagokionez, lehenik gureKDDCup datubasea eratu da KDDCup99-ko konexio atributuei payload-ak (sareko paketeen datu eremuak) gehituz, izan ere, ez-flood erasoak (pakete gutxi erabiltzen dituzten erasoak) hautemateko ezinbestekoak baitira. Ondoren, datu hauek modelatuz testuinguruarekiko independenteak diren payload prozesaketak oinarri dituen sareko erasoak hautemateko sistema (network Intrusion Detection System (nIDS)) bat proposatu da maila oneko eraso hautemate-tasak lortuz. Web meatzaritzaren testuinguruan, weba pertsonalizatzeko helburuarekin web nabigazioen jarduera modelatu da. Honetarako, web zerbizarietako lorratz fitxategietan metatutako informazioa soilik erabiliz ezagutza erabilgarria erauziko duen sistema orokor eta ez-inbasiboak proposatu dira. Ekarpenak bi zentzutan eginaz: arazoen hautematean eta esteken iradokitzean. Lehen aplikazioan sesioen nabigazioa adierazteko atributu esanguratsuen zerrenda bat proposatu da, gero nabigazioak multzokatu eta nabigazio profil ezberdinak hautemateko. Bigarren aplikazioan, estekak iradokitzeko sistema orokor eta ez-inbasibo bat proposatu da, eta berau, estekak aurresateko testuinguruan ebaluatu da emaitza onak lortuz. Multzokatzeak balioztatzeko indizeen (Cluster Validity Indices (CVI)) azterketari dagokionez, gaurdaino aurkitu den CVI-en konparaketa zabalena burutu da partizioen antzekotasun neurrian oinarritutako ebaluazio metodologia erabiliz. Gainera, CVI-en portaera aztertu da egiazko web meatzaritza aplikazio batean normalean baino multzo kopuru handiagoak dituena, non CVI-ek ezegonkorrak izateko joera baitute. Arazo honi aurre eginaz, CVI ezberdinek partizio ezberdinetarako lortzen dituzten balioen maldak aztertuz automatikoki partiziorik onena hautatzen duen prozedura proposatu da.[ES]Esta tesis doctoral hace contribuciones en el modelado de comportamientos encontrados en diferentes tipos de datos adquiridos desde internet y en el campo de la evaluación del clustering. Dos tipos de datos de internet han sido procesados: en primer lugar el tráfico de internet con el objetivo de detectar ataques; y en segundo lugar la actividad generada por los usuarios web con el objetivo de personalizar la web; siendo los dos tipos de datos de naturaleza secuencial. Para este fin, se han aplicado técnicas de aprendizaje automático, principalmente técnicas no-supervisadas. Además, se han hecho aportaciones en la evaluación de particiones de clusters para facilitar la selección de la mejor partición de clusters. Respecto a la detección de ataques en la red, primero, se generó la base de datos gureKDDCup que añade el payload (la parte de contenido de los paquetes de la red) a los atributos de la conexión de KDDCup99 porque el payload es esencial para la detección de ataques no-flood (ataques que utilizan pocos paquetes). Después, se propuso un sistema de detección de intrusos (network Intrusion Detection System (IDS)) modelando los datos de gureKDDCup donde se propusieron varios preprocesos del payload independientes del contexto obteniendo resultados satisfactorios. En el contexto de la minerı́a web, se ha modelado la actividad de la navegación web para la personalización web. En este contexto se propondrán sistemas genéricos y no-invasivos para la extracción del conocimiento, utilizando únicamente la información almacenada en los ficheros log de los servidores web. Se han hecho aportaciones en dos sentidos: en la detección de problemas y en la sugerencia de links. En la primera aplicación, se propuso una lista de atributos significativos para representar las sesiones de navegación web para después agruparlos y detectar diferentes perfiles de navegación. En la segunda aplicación, se propuso un sistema general y no-invasivo para sugerir links y se evaluó en el contexto de predicción de links con resultados satisfactorios. Respecto al análisis de ı́ndices de validación de clusters (Cluster Validity Indices (CVI)), se ha realizado la más amplia comparación encontrada hasta el momento que utiliza la metodologı́a de evaluación basada en medidas de similitud de particiones. Además, se ha analizado el comportamiento de los CVIs en una aplicación real de minerı́a web con un número elevado de clusters, contexto en el que los CVIs tienden a ser inestables, ası́ que se propuso un procedimiento para la selección automática de la mejor partición en base a la pendiente de los valores de diferentes CVIs.Grant of the Basque Government (ref.: BFI08.226); Grant of Ministry of Economy and Competitiveness of the Spanish Government (ref.: BES-2011-045989); Research stay grant of Spanish Ministry of Economy and Competitiveness (ref.: EEBB-I-14-08862); University of the Basque Country UPV/EHU (BAILab, grant UFI11/45); Department of Education, Universities and Research of the Basque Government (grant IT-395-10); Ministry of Economy and Competitiveness of the Spanish Government and by the European Regional Development Fund - ERDF (eGovernAbility, grant TIN2014-52665-C2-1-R)

    Tree Echo State Networks

    Get PDF
    In this paper we present the Tree Echo State Network (TreeESN) model, generalizing the paradigm of Reservoir Computing to tree structured data. TreeESNs exploit an untrained generalized recursive reservoir, exhibiting extreme efficiency for learning in structured domains. In addition, we highlight through the paper other characteristics of the approach: First, we discuss the Markovian characterization of reservoir dynamics, extended to the case of tree domains, that is implied by the contractive setting of the TreeESN state transition function. Second, we study two types of state mapping functions to map the tree structured state of TreeESN into a fixed-size feature representation for classification or regression tasks. The critical role of the relation between the choice of the state mapping function and the Markovian characterization of the task is analyzed and experimentally investigated on both artificial and real-world tasks. Finally, experimental results on benchmark and real-world tasks show that the TreeESN approach, in spite of its efficiency, can achieve comparable results with state-of-the-art, although more complex, neural and kernel based models for tree structured data

    The decision tree approach to classification

    Get PDF
    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers
    corecore