130 research outputs found

    Synthesis and Hardware Implementation of an Unmanned Aerial Vehicle Automatic Landing System Utilizing Quantitative Feedback Theory

    Get PDF
    Approach and landing are among the most difficult flight regimes for automatic control of fixed-wing aircraft. Additional challenges are introduced when working with unmanned aerial vehicles, such as modelling uncertainty and limited gust tolerance. This thesis develops linear discrete-time automatic landing controllers using Quantitative Feedback Theory to ensure control robustness and adequate disturbance rejection. Controllers are developed in simulation and evaluated in flight tests of the low cost Easy Star remote-controlled platform. System identification of the larger Pegasus unmanned aerial vehicle is performed to identify dynamic models from flight data. A full set of controllers are subsequently developed and evaluated in simulation for the Pegasus. The extensive simulation and experimental testing with the Easy Star will reduce the time required to implement the Pegasus control laws, and will reduce the associated risk by validating the core experimental software. It is concluded that the control synthesis process using Quantitative Feedback Theory provides robust controllers with generally adequate performance, based on simulation and hardware results. The Quantitative Feedback Theory framework provides a good method for synthesizing the inner-loop controllers and satisfying performance requirements, but in many of the cases considered here it is found to be impractical for the outer loop designs. The primary recommendations of this work are: perform additional verification flights on the Easy Star; repeat Pegasus system identification for a landing configuration before flight testing the control laws; design and implement a rudder control loop on the Pegasus for control of the vehicle after touchdown

    Model Reference Input Shaping Using Quantitative Feedforward-Feedback Controller

    Get PDF
    Input shaping convolutes the reference signal with a sequence of impulses, whose amplitudes and timings are designed to produce a shaped reference that avoids exciting lightly-damped modes to reduce residual vibration from a quick movement. The input shaper can be made robust to uncertain mode parameters by adding more impulses, which delays the reference signal, resulting in longer move time. Instead of using more impulses, in this paper, a feedforward-feedback control system, based on the quantitative feedback theory, is placed in the loop to match the closed-loop system, with uncertain plant, to a known reference model. The feedforward-feedback system handles the uncertainty, so the input shaper, placed outside the loop, needs not be robust. The closed-loop system emphasizes on selected frequencies and reduces the cost of feedback. It is shown that the proposed feedforward-feedback system is less conservative than the pure-feedback system. Other sources of vibration such as external disturbances and noise can be handled by the feedforward-feedback system as well. Simulation shows that the proposed technique can withstand large plant uncertainty with fast move time when compared to traditional robust input shaper

    Modelling, estimation and control of a twin-helicopter slung load transportation system

    Get PDF
    The development of a control system to transport and assemble cargo using two helicopters is presented in this thesis. It is more economical to use multiple lower cost helicopters in a coordinated manner to carry cargo than to use a single high performance helicopter for the transportation task. The reason for the generally higher cost of hiring high performance helicopters, is because they are not required often, and so, remain idle for most of their lifetime. Thus, using less specialised, lower performing helicopters to share the load is cheaper. Beyond just sharing the load of the cargo, the objective in this investigation is to control the attitude such that precise placement of the cargo can be made. This objective cannot be achieved using a single helicopter, unless a sophisticated tethering mechanism is developed. The installation of wind-turbine blades, powerline towers and radio masts in remote locations, are examples of where the application of this technology may be useful. The investigation of this thesis is around modelling, estimation and control of the twinhelicopter slung load transportation system. The title reflects the investigation that was required to be done to determine whether a scheme could be realisable. To test the concept, an experimental platform was developed. A small, light-weight and high performance avionics system was designed and interfaced to the helicopters. The experimentation was done indoors, and hence, the flying volume was limited. For the purpose of feedback and analysis, a motion capture system was developed to track the position and attitude of the helicopters. A high-fidelity mathematical model of a small-scale helicopter was developed. Estimation algorithms were then developed to optimally fuse the data from the instrumentation designed. The data was then used in a system identification exercise to find the parameters that capture the dynamics of the helicopter. The full constrained model of the twin-helicopter slung load dynamics was then developed. The high-fidelity multivariable, interacting system was then linearised to generate a set of uncertain plants. Unexpected resonant modes were investigated using modal analysis to understand their source. Robust controllers were designed using Quantitative Feedback Theory (QFT) for the individual helicopter attitude and altitude loops. A solution was found for the twin-helicopter load transportation system by decoupling the plant with a static pre-compensator and then designing a decentralised QFT controller for the 6 × 6 plant. The effort of this thesis is towards the (practical) realisation of a twin-helicopter aerial crane capable of attitude control; the architecture for the industrialisation of the twin-helicopter load transportation system is proposed

    A Hybrid Controller for Stability Robustness, Performance Robustness, and Disturbance Attenuation of a Maglev System

    Get PDF
    Devices using magnetic levitation (maglev) offer the potential for friction-free, high-speed, and high-precision operation. Applications include frictionless bearings, high-speed ground transportation systems, wafer distribution systems, high-precision positioning stages, and vibration isolation tables. Maglev systems rely on feedback controllers to maintain stable levitation. Designing such feedback controllers is challenging since mathematically the electromagnetic force is nonlinear and there is no local minimum point on the levitating force function. As a result, maglev systems are open-loop unstable. Additionally, maglev systems experience disturbances and system parameter variations (uncertainties) during operation. A successful controller design for maglev system guarantees stability during levitating despite system nonlinearity, and desirable system performance despite disturbances and system uncertainties. This research investigates five controllers that can achieve stable levitation: PD, PID, lead, model reference control, and LQR/LQG. It proposes an acceleration feedback controller (AFC) design that attenuates disturbance on a maglev system with a PD controller. This research proposes three robust controllers, QFT, Hinf , and QFT/Hinf , followed by a novel AFC-enhanced QFT/Hinf (AQH) controller. The AQH controller allows system robustness and disturbance attenuation to be achieved in one controller design. The controller designs are validated through simulations and experiments. In this research, the disturbances are represented by force disturbances on the levitated object, and the system uncertainties are represented by parameter variations. The experiments are conducted on a 1 DOF maglev testbed, with system performance including stability, disturbance rejection, and robustness being evaluated. Experiments show that the tested controllers can maintain stable levitation. Disturbance attenuation is achieved with the AFC. The robust controllers, QFT, Hinf , QFT/ Hinf, and AQH successfully guarantee system robustness. In addition, AQH controller provides the maglev system with a disturbance attenuation feature. The contributions of this research are the design and implementation of the acceleration feedback controller, the QFT/ Hinf , and the AQH controller. Disturbance attenuation and system robustness are achieved with these controllers. The controllers developed in this research are applicable to similar maglev systems
    • …
    corecore