2,953 research outputs found

    Approximate Data Analytics Systems

    Get PDF
    Today, most modern online services make use of big data analytics systems to extract useful information from the raw digital data. The data normally arrives as a continuous data stream at a high speed and in huge volumes. The cost of handling this massive data can be significant. Providing interactive latency in processing the data is often impractical due to the fact that the data is growing exponentially and even faster than Moore’s law predictions. To overcome this problem, approximate computing has recently emerged as a promising solution. Approximate computing is based on the observation that many modern applications are amenable to an approximate, rather than the exact output. Unlike traditional computing, approximate computing tolerates lower accuracy to achieve lower latency by computing over a partial subset instead of the entire input data. Unfortunately, the advancements in approximate computing are primarily geared towards batch analytics and cannot provide low-latency guarantees in the context of stream processing, where new data continuously arrives as an unbounded stream. In this thesis, we design and implement approximate computing techniques for processing and interacting with high-speed and large-scale stream data to achieve low latency and efficient utilization of resources. To achieve these goals, we have designed and built the following approximate data analytics systems: • StreamApprox—a data stream analytics system for approximate computing. This system supports approximate computing for low-latency stream analytics in a transparent way and has an ability to adapt to rapid fluctuations of input data streams. In this system, we designed an online adaptive stratified reservoir sampling algorithm to produce approximate output with bounded error. • IncApprox—a data analytics system for incremental approximate computing. This system adopts approximate and incremental computing in stream processing to achieve high-throughput and low-latency with efficient resource utilization. In this system, we designed an online stratified sampling algorithm that uses self-adjusting computation to produce an incrementally updated approximate output with bounded error. • PrivApprox—a data stream analytics system for privacy-preserving and approximate computing. This system supports high utility and low-latency data analytics and preserves user’s privacy at the same time. The system is based on the combination of privacy-preserving data analytics and approximate computing. • ApproxJoin—an approximate distributed joins system. This system improves the performance of joins — critical but expensive operations in big data systems. In this system, we employed a sketching technique (Bloom filter) to avoid shuffling non-joinable data items through the network as well as proposed a novel sampling mechanism that executes during the join to obtain an unbiased representative sample of the join output. Our evaluation based on micro-benchmarks and real world case studies shows that these systems can achieve significant performance speedup compared to state-of-the-art systems by tolerating negligible accuracy loss of the analytics output. In addition, our systems allow users to systematically make a trade-off between accuracy and throughput/latency and require no/minor modifications to the existing applications

    Speculative Approximations for Terascale Analytics

    Full text link
    Model calibration is a major challenge faced by the plethora of statistical analytics packages that are increasingly used in Big Data applications. Identifying the optimal model parameters is a time-consuming process that has to be executed from scratch for every dataset/model combination even by experienced data scientists. We argue that the incapacity to evaluate multiple parameter configurations simultaneously and the lack of support to quickly identify sub-optimal configurations are the principal causes. In this paper, we develop two database-inspired techniques for efficient model calibration. Speculative parameter testing applies advanced parallel multi-query processing methods to evaluate several configurations concurrently. The number of configurations is determined adaptively at runtime, while the configurations themselves are extracted from a distribution that is continuously learned following a Bayesian process. Online aggregation is applied to identify sub-optimal configurations early in the processing by incrementally sampling the training dataset and estimating the objective function corresponding to each configuration. We design concurrent online aggregation estimators and define halting conditions to accurately and timely stop the execution. We apply the proposed techniques to distributed gradient descent optimization -- batch and incremental -- for support vector machines and logistic regression models. We implement the resulting solutions in GLADE PF-OLA -- a state-of-the-art Big Data analytics system -- and evaluate their performance over terascale-size synthetic and real datasets. The results confirm that as many as 32 configurations can be evaluated concurrently almost as fast as one, while sub-optimal configurations are detected accurately in as little as a 1/20th1/20^{\text{th}} fraction of the time

    Rapid Sampling for Visualizations with Ordering Guarantees

    Get PDF
    Visualizations are frequently used as a means to understand trends and gather insights from datasets, but often take a long time to generate. In this paper, we focus on the problem of rapidly generating approximate visualizations while preserving crucial visual proper- ties of interest to analysts. Our primary focus will be on sampling algorithms that preserve the visual property of ordering; our techniques will also apply to some other visual properties. For instance, our algorithms can be used to generate an approximate visualization of a bar chart very rapidly, where the comparisons between any two bars are correct. We formally show that our sampling algorithms are generally applicable and provably optimal in theory, in that they do not take more samples than necessary to generate the visualizations with ordering guarantees. They also work well in practice, correctly ordering output groups while taking orders of magnitude fewer samples and much less time than conventional sampling schemes.Comment: Tech Report. 17 pages. Condensed version to appear in VLDB Vol. 8 No.

    A PROCRUSTEAN APPROACH TO STREAM PROCESSING

    Get PDF
    The increasing demand for real-time data processing and the constantly growing data volume have contributed to the rapid evolution of Stream Processing Engines (SPEs), which are designed to continuously process data as it arrives. Low operational cost and timely delivery of results are both objectives of paramount importance for SPEs. Given the volatile and uncharted nature of data streams, achieving the aforementioned goals under fixed resources is a challenge. This calls for adaptable SPEs, which can react to fluctuations in processing demands. In the past, three techniques have been developed for improving an SPE’s ability to adapt. Those techniques are classified based on applications’ requirements on exact or approximate results: stream partitioning, and re-partitioning target exact, and load shedding targets approximate processing. Stream partitioning strives to balance load among processors, and previous techniques neglected hidden costs of distributed execution. Load Shedding lowers the accuracy of results by dropping part of the input, and previous techniques did not cope with evolving streams. Stream re-partitioning is used to reconfigure execution while processing takes place, and previous techniques did not fully utilize window semantics. In this dissertation, we put stream processing in a procrustean bed, in terms of the manner and the degree that processing takes place. To this end, we present new approaches, for window-based aggregate operators, which are applicable to both exact and approximate stream processing in modern SPEs. Our stream partitioning, re-partitioning, and load shedding solutions offer improvements in performance and accuracy on real-world data by exploiting the semantics of both data and operations. In addition, we present SPEAr, the design of an SPE that accelerates processing by delivering approximate results with accuracy guarantees and avoiding unnecessary load. Finally, we contribute a hybrid technique, ShedPart, which can further improve load balance and performance of an SPE

    Stratified Random Sampling from Streaming and Stored Data

    Get PDF
    Stratified random sampling (SRS) is a widely used sampling technique for approximate query processing. We consider SRS on continuously arriving data streams, and make the following contributions. We present a lower bound that shows that any streaming algorithm for SRS must have (in the worst case) a variance that is Ω(r ) factor away from the optimal, where r is the number of strata. We present S-VOILA, a streaming algorithm for SRS that is locally variance-optimal. Results from experiments on real and synthetic data show that S-VOILA results in a variance that is typically close to an optimal offline algorithm, which was given the entire input beforehand. We also present a variance-optimal offline algorithm VOILA for stratified random sampling. VOILA is a strict generalization of the well-known Neyman allocation, which is optimal only under the assumption that each stratum is abundant, i.e. has a large number of data points to choose from. Experiments show that VOILA can have significantly smaller variance (1.4x to 50x) than Neyman allocation on real-world data

    A Brief History of Web Crawlers

    Full text link
    Web crawlers visit internet applications, collect data, and learn about new web pages from visited pages. Web crawlers have a long and interesting history. Early web crawlers collected statistics about the web. In addition to collecting statistics about the web and indexing the applications for search engines, modern crawlers can be used to perform accessibility and vulnerability checks on the application. Quick expansion of the web, and the complexity added to web applications have made the process of crawling a very challenging one. Throughout the history of web crawling many researchers and industrial groups addressed different issues and challenges that web crawlers face. Different solutions have been proposed to reduce the time and cost of crawling. Performing an exhaustive crawl is a challenging question. Additionally capturing the model of a modern web application and extracting data from it automatically is another open question. What follows is a brief history of different technique and algorithms used from the early days of crawling up to the recent days. We introduce criteria to evaluate the relative performance of web crawlers. Based on these criteria we plot the evolution of web crawlers and compare their performanc
    • …
    corecore