17 research outputs found

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Algebraic geometry in experimental design and related fields

    Get PDF
    The thesis is essentially concerned with two subjects corresponding to the two grants under which the author was research assistant in the last three years. The one presented first, which cronologically comes second, addresses the issues of iden- tifiability for polynomial models via algebraic geometry and leads to a deeper understanding of the classical theory. For example the very recent introduction of the idea of the fan of an experimental design gives a maximal class of models identifiable with a given design. The second area develops a theory of optimum orthogonal fractions for Fourier regression models based on integer lattice designs. These provide alternatives to product designs. For particular classes of Fourier models with a given number of interactions the focus is on the study of orthogonal designs with attention given to complexity issues as the dimension of the model increases. Thus multivariate identifiability is the field of concern of the thesis. A major link between these two parts is given by Part III where the algebraic approach to identifiability is extended to Fourier models and lattice designs. The approach is algorithmic and algorithms to deal with the various issues are to be found throughout the thesis. Both the application of algebraic geometry and computer algebra in statistics and the analysis of orthogonal fractions for Fourier models are new and rapidly growing fields. See for example the work by Koval and Schwabe (1997) [42] on qualitative Fourier models, Shi and Fang (1995) [67] on ¿/-designs for Fourier regression and Dette and Haller (1997) [25] on one-dimensional incomplete Fourier models. For algebraic geometry in experimental design see Fontana, Pistone and Rogantin (1997) [31] on two-level orthogonal fractions, Caboara and Robbiano (1997) [15] on the inversion problem and Robbiano and Rogantin (1997) [61] on distracted fractions. The only previous extensive application of algebraic geometry in statistics is the work of Diaconis and Sturmfels (1993) [27] on sampling from conditional distributions

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF

    Coding theory, information theory and cryptology : proceedings of the EIDMA winter meeting, Veldhoven, December 19-21, 1994

    Get PDF

    Part I:

    Get PDF

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    International Symposium on Mathematics, Quantum Theory, and Cryptography

    Get PDF
    This open access book presents selected papers from International Symposium on Mathematics, Quantum Theory, and Cryptography (MQC), which was held on September 25-27, 2019 in Fukuoka, Japan. The international symposium MQC addresses the mathematics and quantum theory underlying secure modeling of the post quantum cryptography including e.g. mathematical study of the light-matter interaction models as well as quantum computing. The security of the most widely used RSA cryptosystem is based on the difficulty of factoring large integers. However, in 1994 Shor proposed a quantum polynomial time algorithm for factoring integers, and the RSA cryptosystem is no longer secure in the quantum computing model. This vulnerability has prompted research into post-quantum cryptography using alternative mathematical problems that are secure in the era of quantum computers. In this regard, the National Institute of Standards and Technology (NIST) began to standardize post-quantum cryptography in 2016. This book is suitable for postgraduate students in mathematics and computer science, as well as for experts in industry working on post-quantum cryptography

    International Symposium on Mathematics, Quantum Theory, and Cryptography

    Get PDF
    This open access book presents selected papers from International Symposium on Mathematics, Quantum Theory, and Cryptography (MQC), which was held on September 25-27, 2019 in Fukuoka, Japan. The international symposium MQC addresses the mathematics and quantum theory underlying secure modeling of the post quantum cryptography including e.g. mathematical study of the light-matter interaction models as well as quantum computing. The security of the most widely used RSA cryptosystem is based on the difficulty of factoring large integers. However, in 1994 Shor proposed a quantum polynomial time algorithm for factoring integers, and the RSA cryptosystem is no longer secure in the quantum computing model. This vulnerability has prompted research into post-quantum cryptography using alternative mathematical problems that are secure in the era of quantum computers. In this regard, the National Institute of Standards and Technology (NIST) began to standardize post-quantum cryptography in 2016. This book is suitable for postgraduate students in mathematics and computer science, as well as for experts in industry working on post-quantum cryptography

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    corecore