21,348 research outputs found

    Erasure Correction for Noisy Radio Networks

    Get PDF
    The radio network model is a well-studied model of wireless, multi-hop networks. However, radio networks make the strong assumption that messages are delivered deterministically. The recently introduced noisy radio network model relaxes this assumption by dropping messages independently at random. In this work we quantify the relative computational power of noisy radio networks and classic radio networks. In particular, given a non-adaptive protocol for a fixed radio network we show how to reliably simulate this protocol if noise is introduced with a multiplicative cost of poly(log Delta, log log n) rounds where n is the number nodes in the network and Delta is the max degree. Moreover, we demonstrate that, even if the simulated protocol is not non-adaptive, it can be simulated with a multiplicative O(Delta log ^2 Delta) cost in the number of rounds. Lastly, we argue that simulations with a multiplicative overhead of o(log Delta) are unlikely to exist by proving that an Omega(log Delta) multiplicative round overhead is necessary under certain natural assumptions

    Broadcasting in Noisy Radio Networks

    Full text link
    The widely-studied radio network model [Chlamtac and Kutten, 1985] is a graph-based description that captures the inherent impact of collisions in wireless communication. In this model, the strong assumption is made that node vv receives a message from a neighbor if and only if exactly one of its neighbors broadcasts. We relax this assumption by introducing a new noisy radio network model in which random faults occur at senders or receivers. Specifically, for a constant noise parameter p[0,1)p \in [0,1), either every sender has probability pp of transmitting noise or every receiver of a single transmission in its neighborhood has probability pp of receiving noise. We first study single-message broadcast algorithms in noisy radio networks and show that the Decay algorithm [Bar-Yehuda et al., 1992] remains robust in the noisy model while the diameter-linear algorithm of Gasieniec et al., 2007 does not. We give a modified version of the algorithm of Gasieniec et al., 2007 that is robust to sender and receiver faults, and extend both this modified algorithm and the Decay algorithm to robust multi-message broadcast algorithms. We next investigate the extent to which (network) coding improves throughput in noisy radio networks. We address the previously perplexing result of Alon et al. 2014 that worst case coding throughput is no better than worst case routing throughput up to constants: we show that the worst case throughput performance of coding is, in fact, superior to that of routing -- by a Θ(log(n))\Theta(\log(n)) gap -- provided receiver faults are introduced. However, we show that any coding or routing scheme for the noiseless setting can be transformed to be robust to sender faults with only a constant throughput overhead. These transformations imply that the results of Alon et al., 2014 carry over to noisy radio networks with sender faults.Comment: Principles of Distributed Computing 201

    Latency Optimal Broadcasting in Noisy Wireless Mesh Networks

    Full text link
    In this paper, we adopt a new noisy wireless network model introduced very recently by Censor-Hillel et al. in [ACM PODC 2017, CHHZ17]. More specifically, for a given noise parameter p[0,1],p\in [0,1], any sender has a probability of pp of transmitting noise or any receiver of a single transmission in its neighborhood has a probability pp of receiving noise. In this paper, we first propose a new asymptotically latency-optimal approximation algorithm (under faultless model) that can complete single-message broadcasting task in D+O(log2n)D+O(\log^2 n) time units/rounds in any WMN of size n,n, and diameter DD. We then show this diameter-linear broadcasting algorithm remains robust under the noisy wireless network model and also improves the currently best known result in CHHZ17 by a Θ(loglogn)\Theta(\log\log n) factor. In this paper, we also further extend our robust single-message broadcasting algorithm to kk multi-message broadcasting scenario and show it can broadcast kk messages in O(D+klogn+log2n)O(D+k\log n+\log^2 n) time rounds. This new robust multi-message broadcasting scheme is not only asymptotically optimal but also answers affirmatively the problem left open in CHHZ17 on the existence of an algorithm that is robust to sender and receiver faults and can broadcast kk messages in O(D+klogn+polylog(n))O(D+k\log n + polylog(n)) time rounds.Comment: arXiv admin note: text overlap with arXiv:1705.07369 by other author

    On Distributed Computation in Noisy Random Planar Networks

    Full text link
    We consider distributed computation of functions of distributed data in random planar networks with noisy wireless links. We present a new algorithm for computation of the maximum value which is order optimal in the number of transmissions and computation time.We also adapt the histogram computation algorithm of Ying et al to make the histogram computation time optimal.Comment: 5 pages, 2 figure

    A Robust Zero-Calibration RF-based Localization System for Realistic Environments

    Full text link
    Due to the noisy indoor radio propagation channel, Radio Frequency (RF)-based location determination systems usually require a tedious calibration phase to construct an RF fingerprint of the area of interest. This fingerprint varies with the used mobile device, changes of the transmit power of smart access points (APs), and dynamic changes in the environment; requiring re-calibration of the area of interest; which reduces the technology ease of use. In this paper, we present IncVoronoi: a novel system that can provide zero-calibration accurate RF-based indoor localization that works in realistic environments. The basic idea is that the relative relation between the received signal strength from two APs at a certain location reflects the relative distance from this location to the respective APs. Building on this, IncVoronoi incrementally reduces the user ambiguity region based on refining the Voronoi tessellation of the area of interest. IncVoronoi also includes a number of modules to efficiently run in realtime as well as to handle practical deployment issues including the noisy wireless environment, obstacles in the environment, heterogeneous devices hardware, and smart APs. We have deployed IncVoronoi on different Android phones using the iBeacons technology in a university campus. Evaluation of IncVoronoi with a side-by-side comparison with traditional fingerprinting techniques shows that it can achieve a consistent median accuracy of 2.8m under different scenarios with a low beacon density of one beacon every 44m2. Compared to fingerprinting techniques, whose accuracy degrades by at least 156%, this accuracy comes with no training overhead and is robust to the different user devices, different transmit powers, and over temporal changes in the environment. This highlights the promise of IncVoronoi as a next generation indoor localization system.Comment: 9 pages, 13 figures, published in SECON 201

    Binary Independent Component Analysis with OR Mixtures

    Full text link
    Independent component analysis (ICA) is a computational method for separating a multivariate signal into subcomponents assuming the mutual statistical independence of the non-Gaussian source signals. The classical Independent Components Analysis (ICA) framework usually assumes linear combinations of independent sources over the field of realvalued numbers R. In this paper, we investigate binary ICA for OR mixtures (bICA), which can find applications in many domains including medical diagnosis, multi-cluster assignment, Internet tomography and network resource management. We prove that bICA is uniquely identifiable under the disjunctive generation model, and propose a deterministic iterative algorithm to determine the distribution of the latent random variables and the mixing matrix. The inverse problem concerning inferring the values of latent variables are also considered along with noisy measurements. We conduct an extensive simulation study to verify the effectiveness of the propose algorithm and present examples of real-world applications where bICA can be applied.Comment: Manuscript submitted to IEEE Transactions on Signal Processin
    corecore