49 research outputs found

    Methods and Distributed Software for Visualization of Cracks Propagating in Discrete Particle Systems

    Get PDF
    Scientific visualization is becoming increasingly important in analyzing and interpreting numerical and experimental data sets. Parallel computations of discrete particle systems lead to large data sets that can be produced, stored and visualized on distributed IT infrastructures. However, this leads to very complicated environments handling complex simulation and interactive visualization on the remote heterogeneous architectures. In micro-structure of continuum, broken connections between neighbouring particles can form complex cracks of unknown geometrical shape. The complex disjoint surfaces of cracks with holes and unavailability of a suitable scalar field defining the crack surfaces limit the application of the common surface extraction methods. The main visualization task is to extract the surfaces of cracks according to the connectivity of the broken connections and the geometry of the neighbouring particles. The research aims at enhancing the visualization methods of discrete particle systems and increasing speed of distributed visualization software. The dissertation consists of introduction, three main chapters and general conclusions. In the first Chapter, a literature review on visualization software, distributed environments, discrete element simulation of particle systems and crack visualization methods is presented. In the second Chapter, novel visualization methods were proposed for extraction of crack surfaces from monodispersed particle systems modelled by the discrete element method. The cell cut-based method, the Voronoi-based method and cell centre-based method explicitly define geometry of propagating cracks in fractured regions. The proposed visualization methods were implemented in the grid visualization e–service VizLitG and the distributed visualization software VisPartDEM. Partial data set transfer from the grid storage element was developed to reduce the data transfer and visualization time. In the third Chapter, the results of experimental research are presented. The performance of e-service VizLitG was evaluated in a geographically distributed grid. Different types of software were employed for data transfer in order to present the quantitative comparison. The performance of the developed visualization methods was investigated. The quantitative comparison of the execution time of local Voronoi-based method and that of global Voronoi diagrams generated by Voro++ library was presented. The accuracy of the developed methods was evaluated by computing the total depth of cuts made in particles by the extracted crack surfaces. The present research confirmed that the proposed visualization methods and the developed distributed software were capable of visualizing crack propagation modelled by the discrete element method in monodispersed particulate media

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    Investigating grid computing technologies for use with commercial simulation packages

    Get PDF
    As simulation experimentation in industry become more computationally demanding, grid computing can be seen as a promising technology that has the potential to bind together the computational resources needed to quickly execute such simulations. To investigate how this might be possible, this paper reviews the grid technologies that can be used together with commercial-off-the-shelf simulation packages (CSPs) used in industry. The paper identifies two specific forms of grid computing (Public Resource Computing and Enterprise-wide Desktop Grid Computing) and the middleware associated with them (BOINC and Condor) as being suitable for grid-enabling existing CSPs. It further proposes three different CSP-grid integration approaches and identifies one of them to be the most appropriate. It is hoped that this research will encourage simulation practitioners to consider grid computing as a technologically viable means of executing CSP-based experiments faster

    The Performance Analysis of the Thermal Discrete Element Method Computations on the GPU

    Get PDF
    The paper presents a GPU implementation of the thermal discrete element method (TDEM) and the comparative analysis of its performance. Several discrete element models for granular flows, the bonded particle model and the TDEM are considered for quantitative comparison of computational performance. The performance measured on NVIDIA(R) Tesla™ P100 GPU is compared with that attained by running the same OpenCL code on Intel(R) Xeon™ E5-2630 CPU with 20 cores. The presented GPU implementation of the TDEM increases the computing time of the bonded particle model only up to 30.6 % of the computing time of the simplest DEM model, which is an acceptable decrease in the performance required for solving coupled thermomechanical problems

    A formal architecture-centric and model driven approach for the engineering of science gateways

    Get PDF
    From n-Tier client/server applications, to more complex academic Grids, or even the most recent and promising industrial Clouds, the last decade has witnessed significant developments in distributed computing. In spite of this conceptual heterogeneity, Service-Oriented Architecture (SOA) seems to have emerged as the common and underlying abstraction paradigm, even though different standards and technologies are applied across application domains. Suitable access to data and algorithms resident in SOAs via so-called ‘Science Gateways’ has thus become a pressing need in order to realize the benefits of distributed computing infrastructures.In an attempt to inform service-oriented systems design and developments in Grid-based biomedical research infrastructures, the applicant has consolidated work from three complementary experiences in European projects, which have developed and deployed large-scale production quality infrastructures and more recently Science Gateways to support research in breast cancer, pediatric diseases and neurodegenerative pathologies respectively. In analyzing the requirements from these biomedical applications the applicant was able to elaborate on commonly faced issues in Grid development and deployment, while proposing an adapted and extensible engineering framework. Grids implement a number of protocols, applications, standards and attempt to virtualize and harmonize accesses to them. Most Grid implementations therefore are instantiated as superposed software layers, often resulting in a low quality of services and quality of applications, thus making design and development increasingly complex, and rendering classical software engineering approaches unsuitable for Grid developments.The applicant proposes the application of a formal Model-Driven Engineering (MDE) approach to service-oriented developments, making it possible to define Grid-based architectures and Science Gateways that satisfy quality of service requirements, execution platform and distribution criteria at design time. An novel investigation is thus presented on the applicability of the resulting grid MDE (gMDE) to specific examples and conclusions are drawn on the benefits of this approach and its possible application to other areas, in particular that of Distributed Computing Infrastructures (DCI) interoperability, Science Gateways and Cloud architectures developments

    Content rendering and interaction technologies for digital heritage systems

    Get PDF
    Existing digital heritage systems accommodate a huge amount of digital repository information; however their content rendering and interaction components generally lack the more interesting functionality that allows better interaction with heritage contents. Many digital heritage libraries are simply collections of 2D images with associated metadata and textual content, i.e. little more than museum catalogues presented online. However, over the last few years, largely as a result of EU framework projects, some 3D representation of digital heritage objects are beginning to appear in a digital library context. In the cultural heritage domain, where researchers and museum visitors like to observe cultural objects as closely as possible and to feel their existence and use in the past, giving the user only 2D images along with textual descriptions significantly limits interaction and hence understanding of their heritage. The availability of powerful content rendering technologies, such as 3D authoring tools to create 3D objects and heritage scenes, grid tools for rendering complex 3D scenes, gaming engines to display 3D interactively, and recent advances in motion capture technologies for embodied immersion, allow the development of unique solutions for enhancing user experience and interaction with digital heritage resources and objects giving a higher level of understanding and greater benefit to the community. This thesis describes DISPLAYS (Digital Library Services for Playing with Shared Heritage Resources), which is a novel conceptual framework where five unique services are proposed for digital content: creation, archival, exposition, presentation and interaction services. These services or tools are designed to allow the heritage community to create, interpret, use and explore digital heritage resources organised as an online exhibition (or virtual museum). This thesis presents innovative solutions for two of these services or tools: content creation where a cost effective render grid is proposed; and an interaction service, where a heritage scenario is presented online using a real-time motion capture and digital puppeteer solution for the user to explore through embodied immersive interaction their digital heritage

    Performance Evaluation of Parallel Haemodynamic Computations on Heterogeneous Clouds

    Get PDF
    The article presents performance evaluation of parallel haemodynamic flow computations on heterogeneous resources of the OpenStack cloud infrastructure. The main focus is on the parallel performance analysis, energy consumption and virtualization overhead of the developed software service based on ANSYS Fluent platform which runs on Docker containers of the private university cloud. The haemodynamic aortic valve flow described by incompressible Navier-Stokes equations is considered as a target application of the hosted cloud infrastructure. The parallel performance of the developed software service is assessed measuring the parallel speedup of computations carried out on virtualized heterogeneous resources. The performance measured on Docker containers is compared with that obtained by using the native hardware. The alternative solution algorithms are explored in terms of the parallel performance and power consumption. The investigation of a trade-off between the computing speed and the consumed energy is performed by using Pareto front analysis and a linear scalarization method
    corecore