4,289 research outputs found

    Computation and Visualization of Risk Assessment in Deep Brain Stimulation

    Get PDF
    International audienceDeep Brain Stimulation is a neurosurgical approach for the treatment of pathologies such as Parkinson's disease. The basic principle consists in placing a thin electrode in a deep part of the brain. To safely reach the target of interest, careful planning must be performed to ensure that no vital structure (e.g. blood vessel) will be damaged during the insertion of the electrode. Currently this planning phase is done without considering the brain shift, which occurs during the surgery once the skull is open, leading to increased risks of complications. In this paper, we propose a method to compute the motion of anatomical structures induced by the brain shift. This computation is based on a biomechanical model of the brain and the cerebro-spinal fluid. We then visualize in a intuitive way the risk of damaging vital structures with the electrode.La stimulation cérébrale profonde est une procédure neurochirurgicale pour le traitement de pathologies comme la maladie de Parkinson. La procédure consiste à implanter une électrode dans une région profonde du cerveau. Pour atteindre la cible sans risque, le chirurgien procède à une plannification minutieuse pour s'assurer qu'aucune structure vitale (vaisseaux sanguins, ventricules) ne se retrouve sur le chemin de l'électrode. Actuellement, la plannification ne considère pas les déformations intra-opératoires, qui se produisent une fois que le crâne est ouvert. Cela peut entraîner des compolications. Dans ce papier, nous proposons une méthode pour calculer le risque de mouvement des structures anatomiques causés par ces déformations. Le calcul s'appuie sur un modèle biomécanique du cerveau et du fluide céphalo-rachidien. Nous visualisons ensuite intuitivement le risque d'endommager une structure vitale avec l'électrode

    Interactive Visualization of Multimodal Brain Connectivity: Applications in Clinical and Cognitive Neuroscience

    Get PDF
    Magnetic resonance imaging (MRI) has become a readily available prognostic and diagnostic method, providing invaluable information for the clinical treatment of neurological diseases. Multimodal neuroimaging allows integration of complementary data from various aspects such as functional and anatomical properties; thus, it has the potential to overcome the limitations of each individual modality. Specifically, functional and diffusion MRI are two non-invasive neuroimaging techniques customized to capture brain activity and microstructural properties, respectively. Data from these two modalities is inherently complex, and interactive visualization can assist with data comprehension. The current thesis presents the design, development, and validation of visualization and computation approaches that address the need for integration of brain connectivity from functional and structural domains. Two contexts were considered to develop these approaches: neuroscience exploration and minimally invasive neurosurgical planning. The goal was to provide novel visualization algorithms and gain new insights into big and complex data (e.g., brain networks) by visual analytics. This goal was achieved through three steps: 3D Graphical Collision Detection: One of the primary challenges was the timely rendering of grey matter (GM) regions and white matter (WM) fibers based on their 3D spatial maps. This challenge necessitated pre-scanning those objects to generate a memory array containing their intersections with memory units. This process helped faster retrieval of GM and WM virtual models during the user interactions. Neuroscience Enquiry (MultiXplore): A software interface was developed to display and react to user inputs by means of a connectivity matrix. This matrix displays connectivity information and is capable to accept selections from users and display the relevant ones in 3D anatomical view (with associated anatomical elements). In addition, this package can load multiple matrices from dynamic connectivity methods and annotate brain fibers. Neurosurgical Planning (NeuroPathPlan): A computational method was provided to map the network measures to GM and WM; thus, subject-specific eloquence metric can be derived from related resting state networks and used in objective assessment of cortical and subcortical tissue. This metric was later compared to apriori knowledge based decisions from neurosurgeons. Preliminary results show that eloquence metric has significant similarities with expert decisions

    Previous, current, and future stereotactic EEG techniques for localising epileptic foci

    Get PDF
    INTRODUCTION: Drug-resistant focal epilepsy presents a significant morbidity burden globally, and epilepsy surgery has been shown to be an effective treatment modality. Therefore, accurate identification of the epileptogenic zone for surgery is crucial, and in those with unclear noninvasive data, stereoencephalography is required. AREAS COVERED: This review covers the history and current practices in the field of intracranial EEG, particularly analyzing how stereotactic image-guidance, robot-assisted navigation, and improved imaging techniques have increased the accuracy, scope, and use of SEEG globally. EXPERT OPINION: We provide a perspective on the future directions in the field, reviewing improvements in predicting electrode bending, image acquisition, machine learning and artificial intelligence, advances in surgical planning and visualization software and hardware. We also see the development of EEG analysis tools based on machine learning algorithms that are likely to work synergistically with neurophysiology experts and improve the efficiency of EEG and SEEG analysis and 3D visualization. Improving computer-assisted planning to minimize manual input from the surgeon, and seamless integration into an ergonomic and adaptive operating theater, incorporating hybrid microscopes, virtual and augmented reality is likely to be a significant area of improvement in the near future

    Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment.

    Get PDF
    PURPOSE: About one-third of individuals with focal epilepsy continue to have seizures despite optimal medical management. These patients are potentially curable with neurosurgery if the epileptogenic zone (EZ) can be identified and resected. Stereo-electroencephalography (SEEG) to record epileptic activity with intracranial depth electrodes may be required to identify the EZ. Each SEEG electrode trajectory, the path between the entry on the skull and the cerebral target, must be planned carefully to avoid trauma to blood vessels and conflicts between electrodes. In current clinical practice trajectories are determined manually, typically taking 2-3 h per patient (15 min per electrode). Manual planning (MP) aims to achieve an implantation plan with good coverage of the putative EZ, an optimal spatial resolution, and 3D distribution of electrodes. Computer-assisted planning tools can reduce planning time by quantifying trajectory suitability. METHODS: We present an automated multiple trajectory planning (MTP) algorithm to compute implantation plans. MTP uses dynamic programming to determine a set of plans. From this set a depth-first search algorithm finds a suitable plan. We compared our MTP algorithm to (a) MP and (b) an automated single trajectory planning (STP) algorithm on 18 patient plans containing 165 electrodes. RESULTS: MTP changed all 165 trajectories compared to MP. Changes resulted in lower risk (122), increased grey matter sampling (99), shorter length (92), and surgically preferred entry angles (113). MTP changed 42 % (69/165) trajectories compared to STP. Every plan had between 1 to 8 (median 3.5) trajectories changed to resolve electrode conflicts, resulting in surgically preferred plans. CONCLUSION: MTP is computationally efficient, determining implantation plans containing 7-12 electrodes within 1 min, compared to 2-3 h for MP

    Stability, Structure and Scale: Improvements in Multi-modal Vessel Extraction for SEEG Trajectory Planning

    Get PDF
    Purpose Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying signi cant associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer assisted planning systems that can optimise the safety pro le of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. Methods The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Results Twelve paired datasets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coe cient was 0.89 ± 0.04, representing a statistically signi cantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ±0.03). Conclusions Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity

    The Effect of Vascular Segmentation Methods on Stereotactic Trajectory Planning for Drug-Resistant Focal Epilepsy: A Retrospective Cohort Study

    Get PDF
    Background: Stereotactic neurosurgical procedures carry a risk of intracranial hemorrhage, which may result in significant morbidity and mortality. Vascular imaging is crucial for planning stereotactic procedures to prevent conflicts with intracranial vasculature. There is a wide range of vascular imaging methods used for stereoelectroencephalography (SEEG) trajectory planning. Computer-assisted planning (CAP) improves planning time and trajectory metrics. We aimed to quantify the effect of different vascular imaging protocols on CAP trajectories for SEEG. Methods: Ten patients who had undergone SEEG (95 electrodes) following preoperative acquisition of gadolinium-enhanced magnetic resonance imaging (MR + Gad), magnetic resonance angiography and magnetic resonance angiography (MRV + MRA), and digital subtraction catheter angiography (DSA) were identified from a prospectively maintained database. SEEG implantations were planned using CAP using DSA segmentations as the gold standard. Strategies were then recreated using MRV + MRA and MR + Gad to define the “apparent” and “true” risk scores associated with each modality. Vessels of varying diameter were then iteratively removed from the DSA segmentation to identify the size at which all 3 vascular modalities returned the same safety metrics. Results: CAP performed using DSA vessel segmentations resulted in significantly lower “true” risk scores and greater minimum distances from vasculature compared with the “true” risk associated with MR + Gad and MRV + MRA. MRV + MRA and MR + Gad returned similar risk scores to DSA when vessels <2 mm and <4 mm were not considered, respectively. Conclusions: Significant variability in vascular imaging and trajectory planning practices exist for SEEG. CAP performed with MR + Gad or MRV + MRA alone returns “falsely” lower risk scores compared with DSA. It is unclear whether DSA is oversensitive and thus restricting potential trajectories

    Robotically Steered Needles: A Survey of Neurosurgical Applications and Technical Innovations

    Get PDF
    This paper surveys both the clinical applications and main technical innovations related to steered needles, with an emphasis on neurosurgery. Technical innovations generally center on curvilinear robots that can adopt a complex path that circumvents critical structures and eloquent brain tissue. These advances include several needle-steering approaches, which consist of tip-based, lengthwise, base motion-driven, and tissue-centered steering strategies. This paper also describes foundational mathematical models for steering, where potential fields, nonholonomic bicycle-like models, spring models, and stochastic approaches are cited. In addition, practical path planning systems are also addressed, where we cite uncertainty modeling in path planning, intraoperative soft tissue shift estimation through imaging scans acquired during the procedure, and simulation-based prediction. Neurosurgical scenarios tend to emphasize straight needles so far, and span deep-brain stimulation (DBS), stereoelectroencephalography (SEEG), intracerebral drug delivery (IDD), stereotactic brain biopsy (SBB), stereotactic needle aspiration for hematoma, cysts and abscesses, and brachytherapy as well as thermal ablation of brain tumors and seizure-generating regions. We emphasize therapeutic considerations and complications that have been documented in conjunction with these applications

    Multimodal connectivity based eloquence score computation and visualisation for computer-aided neurosurgical path planning

    Get PDF
    Non-invasive assessment of cognitive importance has been a major challenge for planning of neurosurgical procedures. In the past decade, in vivo brain imaging modalities have been considered for estimating the \u27eloquence\u27 of brain areas. In order to estimate the impact of damage caused by an access path towards a target region inside of the skull, multi-modal metrics are introduced in this paper. Accordingly, this estimated damage is obtained by combining multi-modal metrics. In other words, this damage is an aggregate of intervened grey matter volume and axonal fibre numbers, weighted by their importance within the assigned anatomical and functional networks. To validate these metrics, an exhaustive search algorithm is implemented for characterising the solution space and visually representing connectional cost associated with a path initiated from underlying points. In this presentation, brain networks are built from resting state functional magnetic resonance imaging (fMRI) and deterministic tractography. their results demonstrate that the proposed approach is capable of refining traditional heuristics, such as choosing the minimal distance from the lesion, by supplementing connectional importance of the resected tissue. This provides complementary information to help the surgeon in avoiding important functional hubs and their anatomical linkages; which are derived from neuroimaging modalities and incorporated to the related anatomical landmarks
    corecore