6,035 research outputs found

    Computation and verification of Lyapunov functions

    Get PDF
    Lyapunov functions are an important tool to determine the basin of attraction of equilibria in Dynamical Systems through their sublevel sets. Recently, several numerical construction methods for Lyapunov functions have been proposed, among them the RBF (Radial Basis Function) and CPA (Continuous Piecewise Affine) methods. While the first method lacks a verification that the constructed function is a valid Lyapunov function, the second method is rigorous, but computationally much more demanding. In this paper, we propose a combination of these two methods, using their respective strengths: we use the RBF method to compute a potential Lyapunov function. Then we interpolate this function by a CPA function. Checking a finite number of inequalities, we are able to verify that this interpolation is a Lyapunov function. Moreover, sublevel sets are arbitrarily close to the basin of attraction. We show that this combined method always succeeds in computing and verifying a Lyapunov function, as well as in determining arbitrary compact subsets of the basin of attraction. The method is applied to two examples

    Active Sampling-based Binary Verification of Dynamical Systems

    Full text link
    Nonlinear, adaptive, or otherwise complex control techniques are increasingly relied upon to ensure the safety of systems operating in uncertain environments. However, the nonlinearity of the resulting closed-loop system complicates verification that the system does in fact satisfy those requirements at all possible operating conditions. While analytical proof-based techniques and finite abstractions can be used to provably verify the closed-loop system's response at different operating conditions, they often produce conservative approximations due to restrictive assumptions and are difficult to construct in many applications. In contrast, popular statistical verification techniques relax the restrictions and instead rely upon simulations to construct statistical or probabilistic guarantees. This work presents a data-driven statistical verification procedure that instead constructs statistical learning models from simulated training data to separate the set of possible perturbations into "safe" and "unsafe" subsets. Binary evaluations of closed-loop system requirement satisfaction at various realizations of the uncertainties are obtained through temporal logic robustness metrics, which are then used to construct predictive models of requirement satisfaction over the full set of possible uncertainties. As the accuracy of these predictive statistical models is inherently coupled to the quality of the training data, an active learning algorithm selects additional sample points in order to maximize the expected change in the data-driven model and thus, indirectly, minimize the prediction error. Various case studies demonstrate the closed-loop verification procedure and highlight improvements in prediction error over both existing analytical and statistical verification techniques.Comment: 23 page
    • …
    corecore